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The dynamics of bubbles and their interaction with nearby bodies, in the absence
of structural defermations, have been studied effectively using boundary element
method (BEM] based eomputer programs. However, structural motion and defor-
mation effects can be important for accurately deter mining the bubble dynamics and
the resulting structural Joads. Reliable prediction of bubble loading and the result-
ing structural response requires both accurate simulation of the bubble dynamics
prior and subsequent to reentrant jet touchdown and fully coupled Auid-structure
interaction modeling. We have developed BEM based codes to study nonlinear
free surface flows in three-dimensional (3DynaF8) and axisymmetric (2DynalFfS)
geometries. Progress in coupling these fluid codes to existing finite element strue-
tural codes (NIKESD and MIKE2D) are reported. The results indicate the local
structural response influences the bubble dynamics resulting in modification of the
bubble shape, bubble period, reentrant jet formation, and pressures generated on
the structure.

INTRODUCTION

The Boundary Element Method (EEM) has proven to be very efficient in solving bubble dynamics problems.
A number of researchers have employed the BEM to model axisymmetric problems of bubble dynamics near
infinite walls (e.g., [1-4]). Chahine et. al. [5-7] extended the method to three-dimensional bubble dynamics
problems. This effort resulted in the development of the BEM codes 3DynaFS (three-dimensional) and
2DymaFS (axisymmetric) for the study of problems with nonlinear free surface deformations.

In this paper, we present results of efforts to create an integrated fluid-structure analysis capability. The
approach we have taken to achieve this is to utilize two different types of codes: BEM codes for the fluid/bubble
dynamics and finite element codes for the structural dynamics. This enables one to take advantage of the
strengths and efficiencies inherent in each code: accurate free surface hydrodynamics and sophisticated struc-
tural and material models.

The struetural analysis is performed using the NIKE suite of finite element programs developed by Lawrence
Livermore National Laboratories (LLNL) [8,9] which ean handle both geometric (large strain) and material
nonlinearities. In the work reported here, a linear elastic material model was employed. Four-noded ax-
isymmetric elements were selected with the axisymmetric code, while for three-dimensional modeling, both
quadrilateral and triangular shell elements were emploved. Implicit structural codes were selected to allow
stability to be maintained while allowing the time step to be determined by the fluid code, thus enabling
adaptive time stepping during the bubble vscillations.

MODEL FORMULATION

Two coupled programs have been developed: one that couples 2DynaFS and NIKE2D for axisymmetric
problems, and another that couples 3DynaFS and xiKE3D for three-dimensional problems.

Shortly after the bubble generation and following propagation of a shock wave away from the explosion
center, large subsonic bubble wall velocities are observed, and one can negleet viscosity and compressibility
effects on the bubble dynamics. These assumptions result in a potential flow (velocity potential, &) satisfying
the Laplace equation,

Vi =0 {1}
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Coupled Numerical Procedure

Both coupled codes employ a complete coupling of the fluid and the structure at the wetted surfaces of
the structure. Calculations are performed at each time step for both the fluid and the structure. Pressures
calculated in the fluid are passed to the structure as loads. Velocities and displacements calculated by the
structure code are passed to the fluid code. The algorithms are structured such that the fluid code is the
“main” routine while the structural code functions as a set of subroutines driven by the “main” fluid routine.

A fully coupled analysis is carried out using the following procedure:

® Read input data, initialize fluid and solid routines, and begin time stepping.
 (*) Solve boundary element equations in the fluid.

e Compute pressure at each node by use of the unsteady Bernoulli equation.
¢ Pass pressures to structural code as loads at each structure node.

® Solve the structural equations with this new load, knowing the state of the structure at the previous
time step, to obtain the new displacement, velocity and acceleration of each node of the structure.

e Pass new velocities and displacements to the fluid code as new boundary conditions.

e Set the velocity normal to the structure at each fluid node along the wetted surface equal to the normal
component of the gradient of the potential, 3®/8n, at that point.

e Update the position of the wetted surface.

e Increment time and return to (¥).
RESULTS AND DISCUSSION

The results of a series of calculations that highlight the effects of structural motion on bubble dynamics
are presented here. In these calculations characteristic length, pressure and time scales are given by Ry, the
maximum radius the bubble would achieve in an infinite medium; F,, the ambient pressure at the location of
the initial center of the bubble; and T, the Rayleigh bubble time - the natural period of a bubble in an infinite
medium and in the absence of gravity given by

T Fons [ 7)

Pressure Loading and Post Touchdown Calculations

Two critical features of any bubble loading simulation method are the calculation of the pressure loading
on the body and the ability to calculate bubble behavior, including pressures generated past reentrant jet
touchdown. In order to validate the BEM scheme we have developed for such bubble dynamics simulations,
we utilized 2DynaFS to simulate experiments conducted by NSWC at Seneca Lake [18]. Details of the
comparisons and the numerical implementation are provided in [13]. Example results for Shot No. 1 of
these tests are presented here. The experiments were conducted with a simple axisymmetric flat plate target
geometry: a 70-inch diameter, l-inch thick, circular steel plate. Bolted into the center of the plate was a
1-foot diameter, 6-inches thick aluminum target plug instrumented with pressure gages. The arrangement
enabled the target to be essentially rigid (i.e., non-compliant). A charge of 10.3 g of CH-6 (cyclohexane) was
detonated at a depth of approximately 166.5 ft. The target plate was located at a standoff distance of 0.465
ft. computed-to correspond to 0.75 R

Figure 1 presents the calculated pressure contours and velocity vectors at three selected times just prior
to, at, and subsequent to reentrant jet impact. Shown are the impact of the reentrant jet and post touchdown
behavior of the remaining toroidal bubble. At impact (t=15.5 ms.), the high pressures are observed on the
wall, caused by breakthrough and subsequent impact on the wall. As the jet spreads out, the loaded area
increases and the pressure magnitudes begin to decrease. When the bubble nears its minimum volume (t=16.8
ms.), a much larger area is affected by this lower intensity pressure pulse.
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The potential, ®, must satisfy initial and boundary conditions at the bubble wall, on the boundaries of any
nearby bodies, and at infinity. At all solid surfaces we equate the normal velocities of the fluid and the surface:

ViE-n=V, n, (2)

where n is the local unit vector normal to the surface and 'V, is the local velocity vector of the surface.

The pressure in the liquid at the bubble surface, Py, is obtained at any time from the following pressure
balance squation:

Vo
Fr=PF, + Py, (_F) - Co, (3)

where Fy, and Vy are the initial known bubble gas pressure and volume respectively, k a polytropic constant
(1 <k < ep/ey), @ is the surface tension, C is the local curvature of the bubble, and V is the instantaneous
value of the bubble volume.

Boundary Element Formulation

The Boundary Element Method was chosen because of its computational efficiency. By considering only
the boundaries of the fluid domain it reduces the dimension of the problem by one. This method is based
on Green’s equation which provides ® anywhere in the domain of the fuid (field points P} if the velocity
potential, ®, and its normal derivatives are known on the fluid boundaries (points M),

fﬁ['%ﬁﬂ+¢%{m%[}]ds=mﬂp], @)

where am = [1 is the solid angle under which P sees the fluid. If the field point is selected to be on the
boundary of the domain of integration, then a closed set of equations can be obtained and used at each time
step to solve for values of 3¢ /8n (or ¢ ) assuming that all values of & (or &40 /8n) are known at the preceding
step.

To solve Equation (4) numerically, it is necessary to discretize the geometry into panels, perform the
integration over each panel, and sum up the contributions of all panels. Equation (4) then becomes a set of
N equations (N is the number of discretization nodes) of index § of the type:

. N ) N
3 (4%2) = X (B - are, (s)
j=1 J=1

where A,; and By; are elements of matrices which are the discrete equivalent of the integrals given in Equation
(4).

To obtain the total fluid velocity at any point on the boundary, the tangential velocity, Vi, must be
computed in addition to the normal velacity, V, = 8% /8n n. This is done using a local surface fit to the
velocity potential.

The basic procedure can then be summarized as follows. With the problem initialized and the velocity
potential known over the free surfaces (such as the bubble interface), an updated value of 8&/8n can be
obtained by performing the integrations in (4) and solving the corresponding matrix equation (5). D&/Dt,
the material derivative of the potential is then computed using Bernoulli’s equation:

%=%+wiw=%’+|v;=. (6)

Using an appropriate time step the values of & on the boundaries can be updated using & at the previous
time step and D®/Dt. New coordinate positions of the nodes are then obtained using the displacement:

8%
dM = (En+ V,.aT_) dt,

where n and e; are the unit normal and tangential vectors. This time stepping procedure is repeated through-
out the bubble growth and collapse, resulting in a shape history of the bubble. These BEM codes have been
validated against Rayleigh-Plesset solutions and available 2-D and 3-D experimental results [5,6,11).
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Fignre 1: Pressure and Velocity Fields Caleulated by 2DynaFS Prior to and Following Heenetrant Jet
Touchdown,

These calculated results are compared to the messured experimental data in Figure 2, which compares the
pressures at the center of the target plate near Lhe time of bubble collapse. For clarity, the early-time shock
wave pressures and long duration underpressure phase while the bublle & expanding and contracting are nol,
shown here. The comparison of the measured and calenlated pressures show excellent agreement.

The timing of the jet touchdown (impact on the plate) is well reproduced by the 2DynaFS caleulation,
which matches the experimental value of 15.5 ms. The overall pressure history alse reproduces the physical
phenomena measured in the experiment. The initial rise in the pressure record is due to the impact of the jet
on the wall. The caleulation reproduces the early twin peak behavior and the overall magnitude of the impact
event. The 2DynaFS results also capture the pressures associated with the contraction of the bubble to its
minimum volume, which appear as the secondary peak in the measured data at approximately 16.9 me.
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Figure 2: Comparison of Pressure History at Center of
Target Plate Calculated by 2DvnaFS with Measured
Values for Seneca Lake Shot 1,
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Deforming Axisymmetric Flat Plate Structure

As an Initial example, caloulations were carried ont by coupling 2DynaFS to a relatively simple axisvin-
metric finite element code, DyNaMIC, developed by the NSWC Carderock Division 112]. An explosion Lmbhle
generatecd beneath a large circular plate with o rigid outer szction and a Aexible central section was considersd.
The bublle is generated at a depth of 167 ft. by a charge weight of 10.3 grams of (CH-6 at a standoll of 0.75
By The large plate of thickness Fan /32 consists of a central {inmer) flexible portion of radins Ry =25
P surrounded by s rigirl outer portion coenstrained not to move such that the total plate radius R, =825
f0x - The fexible plate section is modeled with 20 axisymmetric “brick” elements (4 nodes each) for a total
of 42 nodes. An additional 20 rigid fixed elements are employed in the outer rigid portion of the wall. The
bubble is modeled with 24 axisymmetric panels. The plate material is taken as linear elastic with Young's
modulus, £ = 3 x 107psi, Poisson’s ratio, v = 0.3, and a density such that the plate mass per unit surface
area iz 07 lbin/ft?.
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Figure 3: Deforming Plate. a) Bubble Growth and Collapse Contours. b) Plate Displacements and Bubble
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Figure 4: Post Touchdown Calenlations for Deforming Plate. a) Bubble Shapes. b) Structural Displacements.
c) Pressure at Plate Center Due to Jet Impact and Bubble Recompression.
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Figure 3a presents a sequence of calculated bubble growth and collapse contours up to touchdown showing
formation of the reentering jet. Figure 3b presents position histories of the bubble poles together with dis-
placement histories of the plate center (r = 0) and a point located midway between the center and the flexible
section outer edge (r = B;/2). In this figure, a negative displacement represents an upward displacement.
Thus the plate is initially deformed upward (away from the growing bubble), then moves toward the bubble
when the bubble is near its maximum size, and is again deformed away from the bubble during bubble collapse,
achieving maximum displacement near touchdown.

In Figure 4, these calculations were continued past touchdown and breakthrough with the techuigues
presented in [13]. During this post touchdown phase, the bubble achieves minimum volume and rebounds as
shown in the contours of Figure 4a. Figure 4b presents post touchdown displacement histories of the same two
points as in Figure 3b (Note that the time axis in Figure 4a has been expanded for clarity.) The displacement
is seen to be driven by the bubble dynamics. Figure 4c presents the calculated post touchdown pressure history
at the center of the plate. This exhibits the expected large pressure at touchdown and a second much smaller
and broader pressure peak corresponding to minimum bubble volume.

Spherical Structures

This section presents results of example calculations performed utilizing the more powerful coupled 2Dy-
naF'S - NIKE2D code. We first consider a bubble of initial radius R, = 0.177 m, and initial pressure F,, = 6.83
M Pa growing and collapsing in a gravity field at a depth of 189 R,... above a spherical structure of radius
4 Ryax. This is not representative of an explosive bubble, but is used for illustration of the spherical effects.
The sphere is hollow with a thickness of 0.075 Rinu. The gas constant used is k = 1.25. This results in a value
of T' = 0.0146 5. The material model is linear elastic with Young's Modulus E = 10, 300F,, Poisson’s ratio
v = 0.3, with a total mass M = 225 times the mass of water displaced by the bubble at its maximum size.
The interior of the sphere is pressurized to Fy to ensure initial equilibrium,

The bubble was discretized into 30 axisymmetric panels, and the spherical structure was discretized using
four-noded axisymmetric continuum elements. In the results presented here, 60 elements were employed in
the circumferential direction and 1 element in the thickness direction. Calculations performed with 2 elements
in the thickness direction {120 total elements) showed no difference ir the results with those with 1 element in
the thickness direction. In performing the calculations for this set of parameters, it was found that the coupled
calculation exhibits oscillations that were removed through the use of Rayleigh damping for the structure as
described in [13,14].

The effects of structure motion and flexibility are presented in Figures 5-7. Calculated pressure histories
at, the structure node nearest the bubble are presented in Figure 5 for three structural conditions: fixed (rigid
immaveable), rigidly moveable, and flexible. Caleulations for three flexible structural damping conditions [13,
14] labeled 1,2,3 show little variation. The rigidly moving structure is seen to result in a slight reduction in
the pressure generated, while structural flexibility is seen to result in a reduction of the peak pressure by about
257% relative to the fixed or rigidly moving structure cases. The bubble period is shortened by both rigid body
motion and by structural flexibility as compared to the fixed case,

Figure 6 presents the bubble shapes at different times which exhibit a dramatic difference at the end of a
bubble cycle of cscillation. In the rigid fixed body case the bubble collapses without significant jet formation,
then forms a very thin jet during rebound. Best and Kucera found similar results near solid walls [L3].
Lauterborn [16] has observed jet formation during rebound using laser generated bubbles. Subsequent bubble
growth is such that the bubble practically touches the structure by the time the very thin jet impacts it.
For the rigidly moving structure, a constriction develops on the top of the bubble prior to development of
the reentrant jet. The later collapse of this constriction may correspond to the “counter-jet” observed in the
experiments of Lauterborn & Bolle [17]. In the flexible wall case a constriction also develops on the top of the
bubble followed by the beginning of a reentrant jet, However, the jet disappears as the bubble continues to
grow during reboune.

The influerice of the bubble on the structure can be seen in Figiire 7 which presents the deformed structure
shapes at three instants: during the growth, near maximum bubble size, and near the end of the collapse. In
this figure, the deformations have been ezaggerated by a factor of 25 for clarity. The influence of the loading
by the bubble is apparent. During the early growth and at the time of collapse, the portion of the structure
nearest the bubble (top) is pushed away from the bubble. Between these times, this portion of the structure
is drawn toward the bubble.
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Figures 8 illustrates the eapabilities of ealeulation of small standoff cases and presents the bubble shape
contours from coupled calenlations for the same conditions as above but with a standoff of 0.75 fy... Little
dilference was observed between the fixed and the rigiclly moving cases. However, the deformable case again
showed a small shortening of the period [13]. ) ; : .
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Hesults of a simulation of a stronger bubble interacting with the same structure are presented in Figure
8. This case is that of an explosion bubble generated by 0.5 1b of TNT, Here the conditions, including R,
are the same as for the example of figures 5 - 7 except that B, = 0.15Runx, Fyo = 108 F,, and gravity effects
are neglected. A strong reentry is seen for all three structural conditions: flexible, rigidly moving and rigid
immovable, The bubble dynamics are quantitatively affected by the structural response as can be seen in
Figure 9 which compares the position histories of the bubble nodes nearest and farthest from the structure.
As before, rigid body motion is seen to shorten the bubble preriod while structural fexibility shortens the
period even more relative to the rigid immowble case.

ANALYSIS OF A 3D CYLINDRICAL STRUCTURES

To account; for the elfects of hodily motion in response to the hydrodynamic forces generated by the bubble
dynamics, a Mully coupled general approach that allows lor six degress of freedom - translation and rotation
about the z, ¥, and z directions - hias been incorporated inte 3DynaFS. Details of this implementation can
be found in {13].

Results of caleulations are presented for the case of 3 Lulble generated under the center of a submerged
cylindrical body with its axis located along the  axis ab a distance of 1.2 times Lhe masimum Tmbhle radius.
In these ealeulations, vne plane of symmetry wasz emplayed with a discretization consisting of 85 nodes and
144 triangular panels for the half bubble and 85 nodes and 156 triangular panels for the half body. The body
was seb lo be neutrally buowant,

Figure 10 shows the bubble eontours and bocly cross sections at the y = 0 plane during bubble eoliapse.
The contonrs appear qualitatively similar for the two eases, However, jet touchdown is seen to oceur further

284



R_igid MMovable

¥ 3 ) (] ] -4

ml:lll
Figure 10: Comparison of Bubble Collapse Contours Beneath Higidly Moving and Rigid lmmoveable Bodies.

from the movealle body than fom the immeoveable body. Figure 11ln presents the vertical (z) displacement
and velocity histories of the moveable body. The body is seen to have an initial motion upward (away from
the bubble), lollowed by a period of motion downward [toward the bubble). Finally the body experiences
an upward accoleration (awny from Lthe babble) during the ond of the bubble eollapse as can be seen by the
change in itz veloeity. Due to inertia, the hody has not yet begun to move awny from the bubble at the time
of touchdown although its acdvance downward has nearly ceased. The effect of the body motion on the bubble
dynamics can be seen in Figure 11b which presents the position histories of the bubble north and south poles,
The bubble collapse time when the body is allowed to move is decreased by a small amount relative to the bhaze
case. In addition, as also seen in Figure 10, the point of jet touchdown is found to move downward relative to
the immoveabils body case.
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Figure 11: Comparison of Selected Details of Caleulation of Figure 10. o) Displecement and Velocity of Body.
Iv) Position [istories of Top and Bottom Bulible Modes,

SUMMARY AND CONCLUSIONS

Hesults were presented from Boundary Element Method free surface hydrodynamics codes {2DynaFS,
3DynaF3) that were coupled Lo Finite Element Mothod structursl dynamics codes (MIREZD, MIKESD) to
stredy the effects of a deformalile and movable ideracting nearby structure on bubble dynamies. “The results
indicate potential for significant modifieation to the bubble bebavior and its inluenee on the structure due Lo
motion and deformation of the structure. In particular, bubkle period modification accompaniecd by a modd-
ifleation of the reentrant job formation and of the pressures generated along the solid body can be obtained.
Bubble periods are seen to be shortencd by interaction with a deformalble structure while a sialler amount of
shortening of Bulille period is prodicted for internetion with a rigid buk movable struckure, The presence of a
deformalile strucliwie is prodicied o decrease the pressure along the structure daring bubble collapse compared
to that on a rigid immovable strnciure. These results indicate that structural characteristics and the resulting
strickural response can allect loading caused by explosion bubibles. Shmulation md prediction of these elfects
thug requires fully conpled Aaid-stencture moedeling,
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