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Abstract
Cavitation is known for its deleterious

effects, namely erosion, nolse and loss of
performance. These effects are directly
connected to the dynarrrics of mlcroscopic
bubble nuclei that are present ln the liquid.
I{ere, we consider the modelllng and sim-
ulation of the dynamics of these nuclei at
microscopic level, and extend this to large
scale cavitles such as on propeller blades
and planing surfaces. The narious aspects
of the problem are hlghltghted and briefly
addressed. New areas of research for non
spherical bubbles and bubble clouds are
also consldered. The importance of the in-
clusion of collective effects and the pres-
ence non uniform flow ln a realistlc cavi-
tating flow field is htghlighted.
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Simulation, Boundary Element Method.

INTRODUCTION
Cavitation and bubble dynamics have been the

subject of extensive research since the early works
of Besant [1] and Lord Rayleigh [2]. The phe
nomenon has been mostly studied for hydrody-
namic applications where its presence is asso-
ciated with deleterious effects: namely perfor-
mance deterioration, material erosion, and noise
generation. More recently, cavitation has been
studied for useful purposes including sound gen-
eration, cutting, drilling, cleaning, enhancement
of mixing and chemical reactions, emulsification,

etc. [3, 4, 5]. Cavitation is also of interest for its
damaging effects on implants such as mechanical
heart valves, or for its negative effects on biologi-
cal cells and tissue. In all cases stresses generated
by cavitation lead to energetic and destructive ef-
fects, that are difficult to predict and simulate.

This contribution will consider main aspects of
the subject relevant to cavitation erosion from a
microscopic point of view and then address larger
macroscopic scale which are of more direct appli-
cation to the engineering community. Our aim is
to give an overview of the problem areas where.
significant knowledge has been accumulated and
to also discuss aspects of the dynamics which are
the subject of on-going intensive research.

CAVITATION INCEPTION

Despite a large number of publications on the
subject (ro for instance the reference books

[6, 4) the fundamentals of cavitation rernain rel-
atively poorly understood. In order to achieve a
cavitation free design of a submerged body (such
as a valve, propeller, etc.), or to simulate cavita-
tion and test a model scale in a laboratory envi-
ronment, it is necessary to establish criteria for
cavitation inception, and to define scaling para-
meters to conserve between model and full scale.
Engineers and practitioners use a definition of
cavitation based on an over-simplification.. This
traditional engineering definition is expressed as
follows: A liquid flow erperiences cavitation if the
local pressure drops below the liquid uapor pres-
sure, pu.



This definition is then used to define the non-
dimensional pararneter characterizing cavitation
inception.

Cavitation Number

A dimensional analysis of the flow around an
obstacle of streamwise and transverse character-
istic length scales, .L and I,7, shows that the pres-
sure, pu, dt any point M, can be written as a
function, F, of the following variables:

p* r  :  F (P* re ,  L rW,  p ,V* , l r ) , (1)

where a is the incidence angle of the flow relative
to the obstacle, P- and 7oo are the characteristic
pre.ssure and velocity of the flow, and p and p are
the liquid density and kinematic viscosity. Based
on the above engineering definition of cavitation,
from a cavitation inception standpoint any pres-
sure, p*, iyr the liquid flow is important only in
terms of the pressure difference, p, - p,r, since
the liquid cavitates when pu : pr.In this case,
Equation (1) becomes at cavitation inception:

P* - p, ,rt W pV*L,

f f i  
:  F(a, i ,T),or a :  F(a,Q,R").

(2)
R" is the Reynolds number, Q is a geometric char-
acteristic (shape parameter) of the obstacle, and
o is the "cavi,tation numbq" defined as:

P * - P o

a (mn)

Figure 1: Curves of Bubble Static Equilibrium

in a liquid. The bubble is assumed to contain
non condensable gas of partial pressure, Pn, and
vapor of the liquid of partial pressure, pr. There
fore, the balance between the internal pressure,
the liquid pressure, Pys, and surface tension, 7,
can be written:

(4)

where R" is the bubble radius.
If the liquid ambient pressure changes slowly,

the bubble radius will adapt. The vaporization of
the liquid at the bubble / liquid interface occurs
very fast relative to the time scale of the bubble
dynamics, so that the liquid and its vapor can be
considered at equilibrium at every instant, with
Pno remaining constant. On the other hand, gas
diffusion occurs much slower, so that the amount
of gas inside the bubble remains constant. This
results in a gas partial pressure which varies with
the bubble volume as follows:

(5)

where Pn" is the reference ga.s pressure.
The dynamic equation at the bubble wall then

becomes:

h(R)

An understanding of the bubble stable equilib-
rium can be obtained by considering the curve,
Pn(R).As illustrated in Figure 1, this curve has
a minimum below which there is no equilibrium
bubble radius. Only the left side branch of the
curve correspond to a stable equilibrium. There
fore, if the pressure in the flow fi,etd d,rops below

(3)

P L o : p u * P n " - 2 1  .
R o '

P  - P  / & \ '- c  - o " \ R , /  '

-  P, *  Pn"(*) '  _3.
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Scaling various cavitation experiments or a model
to a full scale is obtained by conserving o. In fact,
the above definition of cavitation inception is only
true in static conditions when the liquid is in con-
tact with its vapor through the presence of a large
free surface. For the more common condition of a
liquid in a flow, liquid vaporization can only occur
through the presence of "micro free surfaces" or
microbubbles, also called "cavitation nuclei". fn-
deed, a pure liquid free of nuclei can sustain very
large tensions, in the hundreds of atmospheres,
before a cavity can be generated through sepa-
ration of the liquid molecules [6]. Therefore, it
is these nuclei that will respond to the liquid
pressure dynamically by oscillating and eventu-
ally growing erplosiuely (i.e. cavi,tate).

Bubble Static Equilibrium

The first level of sophistication for the defin-
ition of a cavitation inception criterion is based
on the static equilibrium of a spherical bubble

(6)



the minimum of the curve, or critical pressure,
pc, afl erplosiue bubble growth (cavitation) is pro-
uokd^

This provides an improved definition for cavi-
tation inception which depends on the size of the
nuclei. The " critiu,l pressure" is the minimum of
Pp(R) :

4"y
Pc: P" -  

#,  
(7)

where r. is the 'critical radius' given by

l3R3 /  z .y \ l  t /2
r " : l # l P u - P u * # l l  ( 8 )

L z " l  \  n " / J

For a given ambient pressure, P6s, aniu bubble
larger than r. will cavitate. This new definition
of cavitation inception highlights the fact that a
correct scaling of the cavitation phenomenon has
to account not only for the conservation of the 

'

cavitation number, but also for the conservation
of the nuclei size distribution between the model
and the full scale.

SPHERICAL BUBBLE DYNAMICS
The most commonly used bubble dynamics

model is for a spherical bubble in an incompress-
ible liquid. In this @se, the radial velocity of the
liquid, r.r,r, at a distance, r, from the bubble cen-
ter, is directly related to the bubble wall velocity
through the continuity equation:

u,:hlr) lry] ,

(10), and are usually unimportant for the case
of a growing and collapsing bubble in a cold liq-
uid. For an oscillating bubble, however, rectified
diffusion can be very inrportant.

If we replace Equation (9) in the liquid momen-
tum equation, integrate that equation between
the radius of the bubble and infinity where the
imposed pressure is P""(t), and account for Equa-
tion (10), we obtain the well known Rayleigh-
Plesset equation [2] where dots denote time deriv-
atives:

+Po-Poou)-?.pwn+f,tw4t #: Po.[*] '-

where ft (rl is the bubble wall velocity at time
t. This equation accounts for the kinematic con-
dition at the bubble wall. A second boundary
condition at the bubble wall, expresses the bal-
ance of the normal stresses,

(12)
This equation describes the bubble radius versus
time when the time variations of Poo are known.
Time integration of this equation enables one to
obtain conditions for bubble oscillations, or rapid
bubble growth and collapse. In addition, this
equation provides necessary input to compute the
pressure generated during bubble collapse.

NONSPHERICAL BUBBLE DYNAMICS
In most practical applications, bubbles are sel-

dom isolated or spherical. With the advent of
modern computational techniques, bubble defor-
mations bubble/bubble and bubble/flow interac-
tions can be addressed. The method that we have
developed to solve these problems is described be
low.

Boundary Element Method

For cavity dynamics, large but subsonic cavity
wall velocities are involved and, as a result, vis-
cous and compressible effects in the liquid can be
neglected. The flow due to cavity dynamics can
therefore be considered potential (velocity poten-
tial, @6), and satisfies the Laplace equation,

v2Qo - o.

(e)

(10)
(13)

Pr.(R) + 4p#.: P, -?R,

where .R is the pressure inside the bubble, and p
the liquid kinematic viscosity. The noncondensi-
ble gas at the partial pressure, Pe, is related to
the reference value Pn", through:

where the constant k is between 1.0 (isothermal)
and q/a (adiabatic), and Vo and V are the ref-
erence and instantaneous bubble volume.

A number of effects such as gas diffusion or
heat transfer have been neglected in Equation

Boundary conditions are such that at rigid sur-
faces fluid velocities normal to the boundary
equal the normal velocity of the boundary itself.

The Boundary Element Methods that we de-
veloped (2Dvr.reFS ancl 3DvrvnFS), [8, 9, 10],
use Green's equation to determine a solution of
the Laplace equation. If the velocity potential,

@6 , and its normal derivatives are known on the
fluid boundaries (points M), and /6 satisfies the
Laplace equation, then @6 can be determined at
any point P in the fluid domain using:

[ [ l _ a 0 u  t  a r  1  \ r
J J s L an lMPl 

a Qu an (.f *-EJ] ds - atrQ6(P)'
(14)

Ps: ,," (+)- , (11)



where O is the solid angle under which P sees the
fluid. The advantage of this integral representa-
tion is that it effectively reduces by one the di-
mension of the problem. If P is selected to be on
the boundary of the fluid domain, then a closed
system of equations is obtained and used at each
time step to solve for values of 0Q6l0n (or g6),
assuming that all values of Qo (or 0Q6lOn) are
known at the preceding time step.

To solve Equation (14) numerically, the ini-
tially spherical bubble is discretized into a geo-
desic shape with flat triangular panels. To evalu-
ate the integrals in Equation (14) over any partic-
ular panel, a linear variation of the potential and
its normal derivative over the panel is assumed.

With the problem initialized and the velocity
potential known over the surface of the bubble,
an updated value of 0Q6/0n ean be obtained by
performing the integrations expressed above and
solving the corresponding matrix equation. The
unsteady Bernoulli equation can then be used to
solve for DQ6/D|, the total material derivative
of Qu while following a particular node during its
motion. Using an appropriate time step, all val-
uee of 6o on the bubble surface and at all node
positions can be updated. This time stepping
procedure is repeated throughout the bubble os-
cillation period, resulting in a shape history of
the bubbles.

Presence of a Basic Flow

Tlo study bubble dynamics in a nonuniforrn
flow field, the following model is used [10]. De.
noting Vo the velocity of the nonuniform flow,
and V1 the velocity field in the presence of oscil-
lating bubble, we define "bubble flow" velocity
and pressure variables, V6 and P6, as:

Va : Vr - Vo, P6 - Pt - Po. (15)

By noticing that for cavitating flows this "bubble

flow" field can be considered potential, we can
use a method similar to the one described in the
previous section to study the dynamics. We then
obtain the following modified Bernoulli equation:

Figure 2: Numerical simulation of bubble col-
lapse near a solid wall using 2DvNaFS. Bub-
ble contours at various times during collapse. a)
No external body forces and formation of a re
entering jet. b)Presence of a strong external body
force and bubble splitting.

In the case ofa boundary layer flow such that
all velocity vectors are parallel to the wall (unit
direction, e"), and depend only on the distance,
z, to the wall, Vo : f (")."r, (16) becomes:

A A , l ^ A

#*ilV6l'+V, 
'v u+; : constant along the y direction.

(18)
These two expressions are used in conjunction
with the numerical model described earlier to
conduct the simulations shown below. This
model is presently being improved using a cou-
pling between a vortex element method and the
BEM described here [14]

ILLUSTRATIVE NUMERICAL RESULTS

Behavior near a solid wall

The physical mechanisms by which bubble col-
lapse near a solid wall causes material erosion has
been the subject of research for a long time. A
shock wave is generated at bubble collapse [6, 7].
In addition, bubble collapse near a solid surface
can proceed with the formation of a very fast
and damaging microjet. In absence of other ac-
celeration or body forces, the bubble first elon-
gates perpendicular to the wall during its growth
phase, then the bubble side away from the wall
flattens and a reentering region is formed initiat-
ing a microjet which pierces the bubble and hits
the wall. Figure 2.a shows a numerical simulation
of this collapse using our code 2DyNnFS which
illustrates the formation of the re-entering jet.
Figure 3 presents some of our high speed pho-
tographs using the spark generated bubbles [13].

" 
l#+ j lv,l '* vo .r, * *]
For cavitation in a line vortex

becomes [t8,t0,23]:

-  V6x(V  x  V" ) .

(16)
this equation

)Qu ' | ,-, ,2 'f -constant arong a radiar direction. 3j};;::""jr?;j:Tt#"|;l;jr}:i|!i""ffi:':- - - t - :  l vb l  + -( f r  z '  or
(17) laser beam to generate the bubbles.
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Figure 4: Bubble behavior near a wall in presence
of a pressure gradient. Case where the attraction
to the wall is weaker than the pressure gradient.
a) high spd photo of a spark-generated bubble,
and b) Simulation using 3DvneFS

Figure 3: High speed photo of bubble collapse
near a wall using a spark-generated bubble.

Tirne = 15.0 ms Tirne = 52.0 ms Time = 55.0 rns

T i r n e =  l 5 . 0 m s  T i r n e = 5 l . 9 r n s Tirne = 54.9 ms Tirne = 59.6 ms

In presence of a body force, such as gravity or
a uniforrn acceleration perpendicular to the wall,
resulting in a pressure that decays when mov-
ing away from the wall, the attraction due to the
wall is counterbalanced. Depending on the rela-
tive importance of the two forces: attraction to
the solid wall and the imposed body force, the
bubble shape rnodification can be significantly
altered. When the two forces, are of the same
order the bubble ends up by splitting into two
parts. As shown in Figure 2.b, it thins at its
central part, cuts itself into two parts which sub-
sequently move in opposite direction. When the
body force is predominant, the bubble ends up
into a 'bulb' shape, and ultimately moves away
from the wall. This is illustrated in Figure 4,
which shows a 3DynnFS simulation, as well as
a the corresponding spark generated bubble ex-
perimental observation. The correspondence is
remarkable.

W:ffi
g l& i&

ffi ffiffi
Figure 5: Bubble collpase between two soild
walls. a) High speed photography observations
with a spark-generated bubble. b) Numerical
simulation using 3DnteFS.

Behavior between two solid walls

The collapse of bubbles between two solid walls
is interesting from a practical view point of cavi-
tation in confined areas. The large deformations
involved are also of interet from the fundamen-
tal dynamics point of view. A bubble centered at
equal distance from the walls, first elongates par-
allel to the walls (direction of most freedom) dur-
ing its growth, then perpendicularly when the im-
plosion starts. Later the bubble constricts in the
medium plane of symmetry and splits into two
parts. This is observed e>cperimentally in Fig-
ure 5.a and simulated numerically using our code
3DvrunFS in Figure 5.b. Later on each of the
two bubbles formed collapses with the formation
of a microjet directed to the closer wall. Quan-
titatively the presence of the two walls augments
the bubble lifetime significantly. This lengthen-
ing effect increases dramatically when the spacing
between the two walls ls reduced [15].

Bubble collapse near a flat wall in a shear flour

While fundamental work on bubble dynamics
has been made in a quiescent liquid near an in-
finite wall, it is obvious that cavitating bubbles
most often occur in a flow with a slip velocity
between the bubble and the liquid. These ef-
fects can be simulated numerically using 3Dv-

Tirne = 62.0 ms
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Figure 6: Influence of the presence of a linear
shear velocity on the collapse of a bubble near a
solid wall. Vrhro, is normalized with the Rayleigh
velocity \M

NAFS. Figure 6 illustrates the results of bubble
behavior near a flat plate in the presence of a
shear flow. The shear flow is such that I/" - g

at the wall and grows linearly away from it to
attain V"a*,, at the location of the bubble cen-
ter. The figure shows interesting results for bub-
ble behavior during bubble growth and collapse.
For an increasing ratio, T : Vsheor l ,ffi, Ae
tween the shear flow velocity and the character-
istic bubble collapse velocity (AP is the pressure
difference across the bubble wall), the bubble de
forms and elongates more and more during its
growth. For small values of r, the reentering jet

is deviated from the perpendicular to the plate
with increasing values of r. For larger values of
r, the re-entering jet formation is totally modi
fied and the bubble tends to cut itself into two.
With increa"sing values of r, an interesting lifting
effect is observed, and the bubble centroid moves
away from the wall. This results from an inter-
action between the shear flow and the rotation
imparted by the velocity gradient to the bubble.

Interaction betr,veen multiple bubbles

In a practical cavitating flow field multibubble
interactions need to be taken into account. The
first model we developed was based on matched
asymptotic expansions [16]. This rnodel was able
to explain the fact that collective bubble dynam-
ics can generate pressures much higher than ex-
pected from simple addition of single bubble ef-
fects, resulting in rnuch higher erosion rates ob-
served when cloud cavitation occurs. However,
this model diverged when the number of bub-
bles increased or when the bubble spacing de
creased. Using the BEM method described here,

r1
t ]
v u**
v
L-

these limitations can be removed, and more re
alistic and accurate results obtained. Figure 7
compares the results obtained with 3DvnnFS
with those using the asymptotic approach. The
bubble cloud is subjected to a sudden pressure

drop, and cloud configurations of t, 2, 4 and 8-
bubbles are considered. For the 2-bubble case
the bubble centers are separated by a distance
ls, and the initial gus pressure in each bubble
is such that the bubble would achieve a maxi-
mum radius &no, - 16 - O.O47lo if isolated.
The four-bubble configuration considers similar
bubbles centered on the corners of a square with
side of dimension le. Finally, the eight bubbles
are located on the corners of a cube of side Js.
The figure presents the variations with time of
the pressure measured at the "cloud center" nor-
malized by that obtained with an isolated bub-
ble. As expected, the asymptotic approach gives
a very good approximation for a small number
of bubbles, N. However, the pressures predicted

by the asymptotic analysis are seen to become
much higher than the more accurate 3D results
for an increasing value of N. Similar results are
observed when the cloud void fraction or the ra-
tio, e =rbo/lo, increases [9].

Figure 8 illustrates the effect of asymmetries
in a bubble cloud configuration, and considers an
asymmetric five bubble configuration. All bub-
bles have the same initial radius and internal
pressure, and are initially spherical and lo.cated
in the same plane. The most visible effect is that
observed on the center bubble. Its growth is ini-
tially similar to that of the other bubbles, but
it ends up being the lea.st deformed. Later on,
as the collapse proceeds with the development of
a reentrant jet directed towards the central bub-
ble, this bubble appears to be shielded by the
rest of the cloud. Its period is at least double
that of the other bubbles. Very similar effects
are seen when the number of bubbles is increased.
Figure 9 shows a 2l-bubble configuration, where
again growth occurs without too much interfer-
ence between the bubbles. However, collapse pro-
ceeds from the outer bubble shells towards the in-
side, indicating a cloud period of oscillation much
larger than that of individual bubbles [7].

Bubble Dynamics on the Axis of a Vortex

Consider now the case of a bubble on the acis of
a vortex line. At f :0 there is an excess internal
pressure and the bubble starts to grow. During
the growth phase the bubble elongates along the
vortex a>cis, then starts its collapse from a signif-
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Figure 7: Comparison of the pressures at the
cloud center predicted by 3DvNeFS and the as-
ymptotic analysis code. e : Rnnor/lo - 0.047.
Pressure are normalized by ma>cimum value for
isolated bubble [9].
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Figure B: Growth and collapse of 5 bubbles hav-
ing the same initial size and internal pressure.
Influence of the initial bubble geornetry distrib-
ution on dynamics. e - O.474, Psof Porno : 283

lel

Figure 9: Simulation of the dynamical interac-
tions between a cloud of 2l bubbles using 3Dy-
naFS on a Cray. Two planes of symmetry are
used. trach bubble has 102 node and 200 pan-
els. a) Growth. b) Collapse [9J.

icantly elongated shape [10]. As shown in Figure
10o, this elongation is not the key parameter to
the subsequent bubble behavior. If the rotation
velocity is neglected, the collapse would proceed
as for elongated bubbles with two opposing jets

formed at the bubble points along the axis (FiS.
104, top). However, the opposite effect with a ra-
dial jet forming is obtained when the rotation in
the vortex flow is included. The bottom of Fig-
ure 10a illustrates this for particular values of the
vortex circulatiotr, f, and the normalized viscous
core radius, R" : Rt/&nor.

In Figure 10b, the initial pressures inside the
bubbles are taken to be larger than the pressure
on the vortex a>cis, and the bubbles are left free
to adapt to this pressure difierence. For a given
value of f, the bubble behavior strongly depends
on n all cases where T" < 1 it appears
that the bubble tends to adapt to the vortex tube
size. This could lead to various bubble shapes as
shown in Figures 10b ending up with a very elon-
gated bubble with a wavy surface for small val-
ues of n". me figure shows bubble contours at
various times during growth and collapse for var-
ious value of R", and initial bubble pressures.
Also shown are selected 3D shapes of the bub-
bles at various times. It is apparent from these
figures that during the initial phase of the bub-
ble growth, radial velocities are large enough to
overcome centrifugal forces and the bubble first
grows almost spherically. Later on, the bubble
shape starts to depart from the spherical and
adapts to the pressure field. The bubble then
elongates along the axis of rotation. Once the
bubble has exceeded its equilibrium volume, bub-
ble surface portions away from the a>cis - high
pressure areas - start to collapse, or to return

Multiple Bubble Dynamics (Growth)
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of a cavity model that postulates development
and growth of a @vlty when the pressure at the
solid surface drops below some critical pressure,
p". Usingthesame BEM rnethod described above
the foil or propeller blade is discretized into nodes
and panels on which the condition of no cross-flow
is satisfied. The problem is then solved for a given
imposed incidence and velocity of the liquid "at

infinity" far from the blade. Then, if the pressure
at any panel of the solid surface is found to be
below the critical pressure p", that panel is made
a free surface that can move away from the solid
surface. This newly created cavity panel is an
interface on which we satisfy dynamic pressure
conditions such as described above. The space
volume between the initial body surface and the
freely moving free surface forms the cavity of vol-
ume V that grows and collapses on the body. The
cavlty surface also moves with the local fluid u
subject to the condition that no cavity point can
penetrate the physical solid surface of the body.
During local cavity collapse a free surface point
that touches the solid surface underneath is made
a solid node again. Some example results are
shown in Figures 11.a . The simulations were
performed using SDyNaFS and are compared to
ercperiments of development of sheet cavitation
on an elliptical planform hydrofoil of NACA 0012
cross-section [18] in Figure 11.b.

coNcLUstoNs
In this contribution we have reviewed various

aspects of cavitation inception and bubble dy-
namics. A few models for bubble growth and col-
lapse were then presented, including non spher-
ical bubble dynamics. The influence of relative
liquid bubble flow, multibubble interactions and
the presence of non uniform flow fields were also
briefly considered. FinallS the extension of the
model to large scale cavity inception and dynam-
ics was presented. The comparison of the results
with available experimental observations shows
that the Boundary Elenrent Method is a promis-
ing method for cavitation dynamics simulation.
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W
Figure 10: Bubble dynamics on the oris of a
vortex line. Left side shows 3D shapes at se
lected times. Right side shows bubble contours
at increasing time. a) Initial elongation ratio
of 3, p;,/p* - 3.27. i) No swirl, ii) O - 0.b6,
Rr/R,no, - 3. b) I - 0.005m2 f s, Ro : l}}p,m.
i)p;/p* : 2, R"/Ro _ 1 , ii) p;/p* : 1,
R"/R" - 1 [10].

rapidly towards the vortex axis. To the contrary,
points near the vortex a><is do not experience ris-
ing pressures during their motion, and are not
forced back towards their initial position, thus
continuing to elongate along the a>cis. As a re
sult, a constriction appears in the mid-section of
the bubble. The bubble can then separate into
two or more tear-shaped bubbles. This splitting
of the bubbles is the main contributor to cavita-
tion inception noise which is used as a means of
detecting cavitation.

Cavitation Dynamics on Propeller Blades

The precise condition under which a cavity
forrns on a solid boundary is not yet well under-
stood. Recently in a careful experiment Morch
& Song [tZ] have shown that a perfect contact
between a solid boundary and the liquid cannot
exist and that nanoscopic air cavities remain all
along any wetted solid surface, thus forming po-
tential cavitation areas. This justifies the use

-l
" l
' l

:@
:I
;t-_
: i - -
s l

l r" i

;@
:I
:L*



(c) (d)

Figure 11: Cavitation on NACA012 hydrofoil.
Simulation using 3DynnFS with dark panels in-
dicating a cavity, a) a 

'- 
8o, V : LOmf s,

o -- 0.5. b) * - LZo, V - IDmf s, o : 1.3, c)
d) Experimental observation from [tA] o =, 10o,

Y 
: t*/t, o: 1.5 at two instants.
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