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ABSTRACT 
 

This report considers the prediction of tip vortex cavitation inception at a fundamental 

physics based level. Starting form the presumption that cavitation inception detection is based on 

the “monitoring” of the interaction between bubble nuclei present in the water and the flow field 

of the propeller blade, the bubble dynamics is investigated in detail.  Spherical and 3D bubble 

dynamics models are implemented and used to study numerically the dynamics of a nucleus in 

an imposed flow field.  The codes provide bubble size, position, and shape variations versus time 

as well as the resulting pressure at any selected monitoring position.  

In the report we exercise extensively the spherical model, which has the merit of 

allowing long time simulations, and to a lesser extent, the non-spherical codes. Non-spherical 

deformations are very important when large pressure gradients exist at the bubble location.  

When this occurs, the simulations show that strong bubble deformation leading to re-entering jet 

formation and bubble splitting may occur even while the bubble is growing during its capture by 

the vortex.  These dynamic phenomena may cause high frequency acoustic emission due to the 

collision and separation of air/liquid interfaces.  This also makes long time numerical 

computations difficult without significant additional numerical development. 

 The spherical model is used to conduct a parametric study, and the results are presented.  

Bubble size and emitted sound variations versus time are presented for various nuclei sizes and 

flow field scales in the case of an ideal Rankine vortex to which a longitudinal viscous core size 

diffusion model is imposed.  Based on the results, one can deduce cavitation inception with the 

help of either an “optical inception criterion” (maximum bubble size larger than a given value) 

or an “acoustical inception criterion” (maximum detected noise higher than a given background 

value).  We use here such criteria and conclude that scaling effects can be inherent to the way in 

which these criteria are exercised if the bubble dynamics knowledge is not taken into account.  

The use of the procedures developed leads to a wealth of information that a cavitation researcher 

can use to draw needed conclusions for his study. We have used it, for instance here, to obtain 

cavitation inception criteria at various scales and to attempt to deduce scaling laws for the 

amplitude and frequency of bubble generated acoustic noise, and in a parallel study to deduce 

scaling laws for maximum bubble radius and frequency. 
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1. INTRODUCTION 
 

It is common to predict tip vortex cavitation inception using small-scale laboratory 

setting.  The challenge is then to find the correct scaling laws to extrapolate the results to the full 

scale.  While the present knowledge enables engineers to proceed properly with this scaling in 

many cases, there are conditions where classical scaling as defined below needs to be 

reconsidered and corrected.  This report aims at contributing to our knowledge to provide such a 

more general scaling. 

In practice, engineering prediction of cavitation inception is made by equating the 

cavitation inception number to the negative of the minimum pressure coefficient neglecting real 

flow effects such as flow viscosity and unsteadiness, water quality, nuclei dynamics and 

bubble/flow interactions. These ignored effects sometimes lead to significant discrepancies 

between model and full-scale tests due to what is known as the “scale effects”.  

The cavitation number, σ , which is the non-dimensional parameter used to characterize 

overall cavitation effects is defined as: 

 21/ 2
vp p

V
σ

ρ
∞

∞

−
= , (1.1) 

where p∞ and V∞ are the characteristic pressure and velocity (usually at free stream), ρ  is the 

liquid density, and vp is the liquid vapor pressure. Following McCormick (1962), several 

experimental studies (DTRC, Fruman et al. 1991, Arndt et al. 1992, Maines and Arndt 1993) 

have established the following scaling law to predict steady tip vortex cavitation inception for 

finite-span hydrofoils:  

 0.42 0
e eR ,   with   R .i l

V C
KCσ

υ
∞= =  (1.2) 

Equation (1.2) correlates the cavitation inception number, σi, to the boundary layer growth in the 

tip region.  Cl is the foil lift coefficient, Re is the flow Reynolds number and K is a 

proportionality constant, which depends on the foil geometry and the flow incidence. However, 

it is well known that the inception of tip vortex cavitation is very sensitive to the nuclei size and 

number in the flow. Arndt and Keller (1992) introduced a correction term to Equation (1.2) 

based on the tensile strength of the liquid to account for the water quality because the onset of 

cavitation in “weak” water (very small tensile strength) and “strong” water (large tensile 
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strength) is quite different. However, the effect of nuclei size distribution in the liquid per se was 

not directly accounted for in that study.   

Direct experimental observation of bubble capture by the tip vortex is difficult due to the 

small size of the nuclei and the high local velocities.  This usually lead to the ignorance of where 

the bubble is captured. Numerical studies, therefore, have been used primarily to study the 

dynamics of nuclei. The complexity of the cavitation inception process, however, has led various 

numerical studies to neglect one or more of the factors, and therefore to only investigate the 

influence of a limited set of parameters. Since tip vortex cavitation inception is usually 

considered to be a traveling bubble form of cavitation, a spherical bubble dynamics model 

coupled with a motion equation has been frequently applied to predict the cavitation inception in 

a tip vortex.  Latorre (1982) and Ligneul and Latorre (1989) applied this approach to deduce 

noise emission from cavitation in a Rankine line vortex. Hsiao and Pauley (1999) further applied 

this approach to study tip vortex cavitation inception with the tip vortex flow field computed by 

Reynolds-Averaged Navier-Stokes equation. This approach, however, neglected non-spherical 

bubble deformations and bubble/flow interactions, which may significantly alter the cavitation 

inception process. Using a three-dimensional non-spherical bubble dynamics model, Chahine 

(1990, 1995) showed that due to a large pressure gradients the bubble while growing deforms to 

a non-spherical shape and forms a re-entering jet directed toward the vortex core when 

approaching the vortex center during its capture. The development of a re-entering jet may result 

in liquid-liquid impact, bubble splitting, and sound emission before the bubble reaches the vortex 

axis. Chahine also used an axisymmetric non-spherical model to simulate bubble dynamics for 

the bubble in the vortex center. Depending on different initial bubble size and ratios of gas to 

ambient pressure, the bubble surface collapsed in different ways after the bubble elongates. It is 

hypothesized that bubble surface collapse and splitting, in addition to bubble volume change, 

would emit high frequency noise and modify the criteria for inception when cavitation inception 

is determined using acoustic techniques. These predictions were confirmed with high-speed 

photography of the interaction between a bubble and a vortex ring (Chahine et al, 1993) and very 

recently by Gopalan et al (2000) and Arndt and Maines (2000). 

 The current study makes a concerted effort to investigate the importance of the various 

factors influencing tip vortex cavitation inception. The tip vortex flow generated by a three-

dimensional foil can be idealized as a simple Rankine line vortex. Conventional empirical 
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equations are used to estimate the vortex strength and core size for three different geometric 

scales of a foil. To investigate the effect of nuclei size, an improved spherical bubble dynamics 

model is implemented and is used to predict the cavitation inception. Both the so-called 

‘acoustic’ criterion (emitted sound level higher than a threshold value) and the ‘optical’ criterion 

(bubble size larger than a threshold value) are considered for determining the cavitation 

inception. A non-spherical bubble dynamics is then applied to study the importance of non-

spherical deformations on the prediction of cavitation inception.  
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2. CLASSICAL APPROACHES FOR SCALING TIP VORTEX 
CAVITATION INCEPTION  

 
 
2.1 General Cavitation Scaling  
 

Classical approaches for predicting the cavitation inception are often made by equating 

the cavitation inception number at inception to the negative of the minimum pressure coefficient. 

Since there is no experimental technique presently to measure the pressure inside the vortex core 

without intrusion, this pressure is usually estimated utilizing the measured circumferential 

velocity. By assuming an axisymmetric velocity profile near the tip, one can compute the 

pressure coefficient by: 

 
22

max
20

2 t t
p

V VdrC
r VV

∞

∞∞

 
= − ≈ − 

 ∫ , (2.1) 

where V∞ is the free stream velocity and maxtV  is the maximum circumferential velocity. 

McCormick (1962) proposed, for the first time, that the boundary layer developed over 

the lower surface of the foil near the tip determines the extent of the vortex core. In his semi-

empirical approach he postulated a power law relationship between the boundary layer thickness, 

δ , and the Reynolds number based on V∞  and the chord length C0,  

 eR .αδ −  (2.2) 

Since no detailed velocity measurements in the region near the tip were available at that time, the 

flow was analyzed by the lifting line theory. As a result, maxtV  was obtained by computing the 

induced downwash velocity at 0.5δ  outboard of the foil. This leads to Cp being roughly 

inversely proportional to δ . He then deduced 0.35α =  based on his experimental measurements 

of critical cavitation inception number.  

Later experimental measurements of the velocity near the tip region (Fruman et al. 1991, 

Arndt et al. 1991) all confirmed that the tip vortex viscous core has a solid body rotation, and 

that the local maximum circumferential velocity is almost proportional to the ratio of local 

vortex circulation, Γ , and vortex core radius, ac, i.e.  

 maxt
c

V
a
Γ . (2.3) 
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On the basis of these previous studies, it appears that the local vortex circulation and core size 

are respectively a fraction of the mid-span bound circulation, 0Γ , and boundary layer thickness, 

0δ , on the pressure side. From classic thin wing theory (Abbott and Doenhoff 1959) one has 

 0 0
1
2 lC C V∞Γ = . (2.4) 

The lifting coefficient, lC , can be determined by 

 0 1
12 ( )
2lC A Aπ= + , (2.5) 

where the coefficient 0A depends only on the angle of attack and the coefficient 1A depends only 

on the shape of the mean line. 

The turbulent boundary layer thickness δ  on the pressure side can be estimated as for a 

fully turbulent boundary layer over a flat plate (Schlichting 1979) 

 
0.2

0
00.37

V C
Cδ

ν

−
∞ =  

 
. (2.6) 

Substituting Equation (2.3), (2.4) and (2.6) into (2.1), the pressure coefficient can then be 

expressed as: 

 
0.4

2 2 0.40
eRp l l

V CC C KC
ν

∞ ≈ − = − 
 

. (2.7) 

Several experimental studies (e.g. Fruman et al. 1992 and Arndt, et al. 1992) have shown 

a good agreement between incipient cavitation number, iσ  and minpC−  after using Equation 

(2.7) to estimate the minpC−  in the tip vortex. 

 

2.2 The Rankine Vortex Model  
 

Developments in laser anemometry have allowed several researchers to determine the 

velocity distribution in a tip vortex flow.  While the flow very close to the tip is not exactly 

symmetric, the tangential velocity profile has two very distinct region: for radial distances less 

than the “viscous core” size, ac, the tangential velocity varies nearly linearly with the distance to 

the core center where this velocity is zero.  For locations larger than ac, the tangential velocity 

decays with distance as the function 1/r.  Figure 1 reproduces experimental results taken from 
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LeGuen (1998) and illustrates the existence of the two regions described above, i.e. a viscous 

core solid body rotation central region, and an inviscid potential vortex outside region. 

Figure 1. Velocity and fluctuations profiles at a distance of 0.5C0
 from the tip of an elliptic foil at an incidence 

of 10º  (from LeGuen, 1998). 

 

The Rankine model gives the following expressions for the velocity, Vt, and pressure, pω :  

 
2 ,

2
( )

,
2

c
c

t

c

r r a
a

V r
r a

r

π

π

Γ ≤ 
 =  

Γ ≥  

, (2.8) 

 

2 2
2

2 42 2

2

2 2

,
4 8

( )

,
8

c
c c

c

p r r a
a a

p r

p r a
r

ω

ρ ρ
π π

ρ
π

∞

∞

 Γ Γ− + ≤ 
 =  

Γ − ≥ 
 

. (2.9)                

 

In the present study we consider the tip vortex generated by finite-span hydrofoils and 

consider three different sizes, small (laboratory 1/48th scale), medium (1/4th scale), and large (full 

scale). These hydrofoils are geometrically similar and are operated at the same angle of attack.  

 

The circulation strength, Γ, for these three scales is estimated as  described in (2.4), and for the 
particular foils considered here we will use 
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 00.04 2 C Vπ ∞Γ = ∗ , (2.10) 

The vortex core size, ac, is estimated by Equation (2.6) 

 0
0.2

e

0.37

R
c

C
a δ= =  (2.11) 

From Equation (2.9), the minimum pressure coefficient in the vortex center is then determined 

by 

 
2

min 2 2
1

2
p

c
C

aVπ
 Γ= −  
 

, (2.12) 

which for the particular foils considered here leads to:  

 0.4
min 0.00234 RepC = − , (2.13) 

The flow parameters for these three cases are shown in Table 1. 

 

 Small Scale Medium Scale Large Scale 
λ  1/48 1/4 1 

C0 (m) 0.0508 0.6096 2.4384 
V∞  (m/sec) 10 12.5 15 
Γ (m2/sec) 0.12767 1.91511 9.19255 

Re 5.08×105 7.62×106 3.66×107 

ac (m) 0.001358 0.009486 0.02770 
minpC  -4.474 -13.215 -24.797 

 
Table 1: Conditions of scaled tests simulated
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3. NUMERICAL METHODS 
3.1 Spherical Model 
 
3.1.1 Improved Spherical Bubble Dynamics Model 
 

The behavior of a spherical bubble in a pressure field is usually described with a 

relatively simple bubble dynamics model known as the Rayleigh-Plesset equation (Plesset 1948)  

 23 1 2 4
2 v gRR R p p p R

R R
γ µ

ρ
 + = + − − − 
 

, (3.1)     

where R is the time dependent bubble radius, ρ is the liquid density, vp  is the vapor pressure, 

gp is the gas pressure inside the bubble, p is the ambient pressure local to the bubble, µ is the 

liquid viscosity, γ  is the surface tension. If the gas is assumed to be perfect and to follow a 

polytropic compression relation, then one has the following relationship between the gas 

pressure and the bubble radius: 

 
3

0
0

k

g g
Rp p
R

 =  
 

, (3.2) 

where 0gp and 0R  are the initial gas pressure and bubble radius respectively and k is the 

polytropic gas constant. In Equation (3.1) the bubble grows principally in response to a change 

in the ambient pressure through gaseous expansion and increase in the vaporous mass within the 

bubble (the vapor pressure is assumed to remain constant). In this modeling the effect of the 

underlying flow is only to produce a prescribed pressure field through which the bubble is 

passively convected, i.e. the influence of the bubble on the liquid flow is neglected.  

In addition, Equation (3.1) does not take into account the effect of any slip velocity 

between the bubble and the carrying liquid. To account for this slip velocity, an additional 

pressure term, 2( ) / 4bU Uρ − , is added to the classical Rayleigh-Plesset equation as (see 

Appendix for detailed derivation): 

 
( )23

2 0
0

3 1 2 4
2 4

k
b

v g
U URRR R p p p R

R R R
γ µ

ρ
  − + = + − − − +  

   
. (3.3) 
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The above equations (3.1, 3.3) are valid when the liquid is incompressible. However, 

liquid compressibility becomes important when bubble-wall velocities become comparable with 

the speed of sound in the liquid. Compressibility effects are also important if one is interested in 

many cycles of the bubble dynamics in which case energy loss by acoustic emission occurs. An 

efficient modification of the Rayleigh-Plesset equation that takes into account liquid 

compressibility was obtained by Gilmore (1952). We adapt Gilmore’s equation and write the 

modified Rayleigh-Plesset equation as:  

 

( )2
0

0
3 1 2(1 ) (1 ) (1 ) 4
2 3 4

k
b

v g
U URR R R R d RRR R p p p

c c c c dt R R R
γ µ

ρ ∞
  −  − + − = + + + − − − + 

   
,(3.4) 

where c is the sound speed.  

Figure 2.  Illustration of the pressure-averaging concept in the core of the vortex.  The 100 µm bubble sees a 
much larger average pressure that the 10 µm bubble. 

It is known that the ambient pressure, p, applied in the classical spherical bubble model is 

the pressure at the bubble center in its absence, without considering pressure variation along the 

bubble surface. This simplification, valid for general flows, leads to unbounded bubble growth 

when the pressure in the vortex center is less than the vapor pressure. Previous studies usually 
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used this as a criterion to determine the cavitation inception number. However, this criterion is 

based on an over-simplification that may lead to wrong predictions. Therefore, in the improved 

model we use here, p is taken to be the average of the outside field pressure over the bubble 

surface. This enables for a much more realistic description of the bubble behavior, e.g. the 

bubble does not continuously grow as it is captured by the line vortex. Instead, once the bubble 

reaches the vortex line axis, it is subjected to an increase in the average pressure as the bubble 

grows and this lead to a more realistic balance of the forces applied to the bubble. Figure 2 

illustrates how the pressure to which the bubble is subjected increases as the bubble grows say 

from a radius of 10µm to a radius of 100µm.  

 

3.1.2 Bubble Motion Equation 
 

The motion equation of a spherical particle subjected to the force of gravity in a fluid at 

rest has been derived by several prominent scientist such as Basset (1888), Boussinesq (1903), 

Oseen (1927). The equation was extended by Tchen (1947) to the case of a fluid moving with 

variable velocity and more recently modified by Maxey and Riley (1983). By considering the 

forces acting on a spherical bubble with radius R the motion equation can be written as follows: 

 
( )

0

1( )
2

1 6
2

b
b b b b b b D b b

t
b b

b b

dU
V V g V p A C U U U U

dt
dU dUdU dUV A t d

dt dt d d

ρ ρ ρ ρ

ρµρ τ τ
π τ τ

= − + ∇ + − −

   
+ − + − −   

   ∫
, (3.5) 

where terms with the subscript b are related to the bubble and those without a subscript are 

related to carrying fluid. Vb and Ab are the bubble volume and projected area, which are equal to 

4/3πR3 and πR2 respectively.  The bubble drag coefficient CD in Equation (3.5) can be 

determined by using the empirical equation of Haberman and Morton (1953): 

 0.63 1.384
e e

e

24 (1 0.197 R 2.6 10 R )
RD b b

b
C −= + + × , (3.6) 

where the bubble Reynolds number is defined as  

 e
2

R b
b

R U U
ν

−
= . (3.7) 

The physical meaning of each term in the right hand side of Equation (3.5) is as follows. 

The first term is a buoyancy force. The second term is due to the pressure gradient in the fluid 
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surrounding the particle. The third term is a drag force. The fourth term is a force to accelerate 

the virtual “added mass” corresponding to the surrounding fluid. The last term is the so-called 

“Basset” term, which is a memory effect term, which takes into account the deviation of the flow 

pattern from steady state. Equation (3.5), however, does not include the lift force, which is 

caused by the particle spin.  

An analysis by Morrison and Stewart (1976) shows that the “Basset” term depends on the 

rate of change of the relative velocity. For flows in which the frequency of the oscillatory motion 

of the carrier fluid is small the Basset term can be neglected. Furthermore, Maxey and Riley 

(1983) have presented order of magnitude estimates for various forces acting in the bubble. They 

concluded that once the motion is established, the Basset history term is only of a secondary 

order when compared to other forces. Since in this study, we release the bubble with the same 

initial velocity as its surrounding liquid, we will neglect the “Basset” term. 

Equation (3.5) describes the motion of a solid particle in a flow. For a gas bubble the 

mass of the gas inside the bubble can be neglected relative to the added mass of the fluid. To 

describe the motion of a gas bubble, however, one has to take into account the force due to the 

bubble volume variation. Johnson and Hsieh (1966) added the term necessary to consider the 

bubble volume variations as follows: 

 ( ) ( )3 3 32
4

b
D b b b

dU g p C U U U U U U R
dt Rρ

= − + ∇ + − − + − . (3.8) 

With a prescribed flow field, a Runge-Kutta fourth-order scheme can be applied to 

integrate Equations (3.8) and (3.3) or (3.4) through time to provide the bubble trajectory and its 

volume variation during bubble capture by the tip vortex.  

  The pressure in the liquid at a distance, l, from the bubble center is given by: 

 
4 2

2 2
42  - .

2
R Rp R R RR

l l
ρ ρ  
 = +   

 
 (3.9) 

 
Far away from the bubble the second bracketed term is negligible, and Equation (3.9) 

degenerates to the equation usually given to the acoustic pressure for instance by Fitzpatrick and 

Strasberg (1958): 

 ( )( ) ,             
4a
V t l Rp t t t

l c
ρ

π
′ −′ ′= = − . (3.10) 
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Since the bubble volume is V=4/3πR3 we have 

 2( ) ( ) 2 ( )  a
Rp t RR t R t
l
ρ  ′ ′ ′= +  , (3.11) 

where pa is the acoustic pressure and c is the sound speed.  

 

3.2 Non-Spherical Bubble Dynamics Model    
 

To study bubble dynamics during bubble capture by a vortex and non-spherical bubble 

deformation, a non-spherical bubble dynamics model based on the Boundary Element Method 

(BEM) is applied. This model assumes that the flow due to the bubble presence is potential and 

that the vortical flow describing the vortex is not modified by the bubble presence and dynamics. 

This model is developed using the fact that any velocity field u can be expressed via the 

Helmholtz decomposition as the sum of the gradient of a scalar potential φ and the curl of a 

vector potential A (Chahine et al. 1997): 

 
2 2

u u u A.

0; .

p

A

ω φ

φ ϖ

= + = ∇ + ∇×

∇ = ∇ = −
 (3.12) 

Since φ satisfies the Laplace equation, one can apply Green’s identity to express φ as:  

 [ (x ) (x,x ) (x ) (x,x )] (x ),S
G G dS
n n

φφ φ ∂ ∂′ ′ ′ ′ ′Ω = −
∂ ∂∫  (3.13) 

where Ω is the solid angle subtended by the fluid at the point x and 1(x,x ) | x x |G −′ ′= − −  is the 

free space Green’s function. To solve Equation (3.13) with the BEM, we discretize the bubble 

surface by triangular elements and then rewrite the equation in a discretized form as 

 
1

( ) ( , ) ( ) ( , ) ( )  ;           1,..., ,
N

i ij i j j ij i j j
j

x A x x x B x x x i N
n
φφ φ

=

∂ ′ ′ ′ ′Ω = − = ∂ 
∑  (3.14) 

where Aij and Bij  are elements of the influence matrices in (3.13) and N is the number of the 

discretized nodes on the bubble surface. Equation (3.14) can be applied to determine the normal 

velocity n∂∂ /φ  on the bubble surface provided that the velocity potential φ over the bubble 

surface is known. For time stepping procedure, all the nodes on the bubble surface are moved to 

their new positions using the displacement / n t tn e V eφ∂ ∂ ⋅ + ⋅  where ne  and te  are the unit 

normal and tangential vectors at the bubble surface, and Vt is the tangential velocity. At the next 

time step, φ is updated by 
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 1 (u u ) .
n

n n n
p t

t ω
φφ φ φ+  ∂= + + + ⋅ ∇ ∆  ∂ 

 (3.15) 

To determine t∂∂ /φ  one needs to start from substituting Helmholtz decomposition into the 

Navier-Stokes equation: 

 

2

2

1( ) ( )
2

( ) .

p
p p p

p

t t
p

ω
ω ω ω

ων
ρ

∂ ∂   + − + × ∇ × + + ∇ +  ∂ ∂  
∇= − + ∇ +

u u u u u u u u

u u
 (3.16) 

With the assumption that the vortex flow field is not modified by the presence of the bubble, the 

vortex flow is predetermined and also satisfies the Navier-Stokes equation: 

 2 2u 1u ( u ) u u .
2

p
t
ω ω

ω ω ω ων
ρ

∂ ∇ − × ∇ × + ∇ = − + ∇ ∂  
 (3.17) 

Substitute Equation (3.16) to Equation (3.15), one can obtain a modified Bernoulli equation: 

 21 | | u ( u ).
2

p p
t

ω
ω ω

φψ φ φ φ
ρ

 ∂ −∇ = ∇ + ∇ + ⋅ ∇ + = ∇ × ∇ × ∂ 
 (3.18) 

For the particular case of the Rankine line vortex, we have u z zeω ω∇ × = . Multiplying Equation 

(3.18) by ze  results in 

 0.
z
ψ∂ =
∂

 (3.19) 

Equation (3.19) indicates that ψ  is constant along the vortex axial direction. Since φ = 0 at z = 

∞, we obtain:  

 21 ( ) ( )u 0.
2

p p p p
t

ω ω
ω

φ φ φ
ρ ρ

∂ − ∞ − ∞+ ∇ + ⋅ ∇ + = =
∂

 (3.20) 

By substituting Equation (3.20) into Equation (3.15), Equation (3.15) can be rewritten as 

 1 21 | | ,
2

n n p p tωφ φ φ
ρ

+  −= + ∇ + ∆ 
 

 (3.21) 

where p can be obtained from the dynamic boundary condition, i.e. normal stress balance on the 

bubble surface: 

 
2

22 ,g vp p p C
n
φγ µ ∂= + − −

∂
 (3.22) 
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where Pg  is the gas pressure and C is the local bubble surface curvature. 

 To determine the pressure generated by the bubble in the field, a second Green’s identity 

is applied to compute t∂∂ /φ  

 
2

[ ( ) ( , ) ( ) ( , )] ( ),
S

G G dS
t t n n t

x x x x x x x   ∂ ∂ ∂ ∂W = -¢ ¢ ¢ ¢ ¢
∂ ∂ ∂ ∂ ∂Ú  (3.23) 

with the acoustic pressure being predominantly pa=− t∂∂ /φ .  
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4. NUMERICAL STUDY 
 
4.1 Cavitation Inception Criteria 
 

Although many different definitions of cavitation inception have been suggested and 

applied by different researchers, there are practical complications in determining consistently the 

actual cavitation inception event. The precise notion of cavitation inception as a practically 

observed phenomenon in contrast to a mathematical consequence of an equation is a matter of 

discussion. From an engineering viewpoint, cavitation inception is usually determined through 

visual or acoustical techniques.  Inception is called when the measurement detects events above 

a pre-defined threshold, in which case an additional notion of number of events per unit time 

above the threshold is required to avoid spurious noise data. In the laboratory the most 

commonly used threshold is via visual observation when bubbles are seen. This visual technique 

can hardly be applied to full-scale tests where an acoustic technique is usually preferred. In the 

acoustic technique, the cavitation inception event can be defined either by the sound amplitude 

level (absolute noise level or relative value over the background noise) and/or by the appearance 

of some characteristic frequencies. In the current study, both the acoustic and the optical criteria 

are investigated for determining the cavitation inception.  In the following we will also show the 

importance of the selection of the bubble dynamics model on the results. 

 

4.2 Scaling of Inception Using the Classical Rayleigh-Plesset Model  
 

To study the scaling effect on the prediction of cavitation inception, first the classical 

incompressible Rayleigh-Plesset spherical model was applied to predict the cavitation inception 

number, σ, for the three scales described earlier. Different initial nuclei sizes were also 

considered to study the effect of the bubble size distribution in the liquid on cavitation inception. 

The computations were conducted by releasing bubbles far away from the vortex core (D=3ac 

where D is the distance between the bubble and the vortex axis) with an initial nucleus 

equilibrium condition, i.e. the initial gas pressure is: 

 ( )0
0

2 g vp p D p
Rω
γ= − + ,     (4.1)  
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Figure 3. Bubble radius versus time and generated acoustic pressure at a distance of  30 cm.  using the 
classical Rayleigh-Plesset equation. 
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where ( )p Dω  is computed by Equation (2.8). Figure 3 shows for the small-scale case the 

bubble radius and the acoustic pressures versus time for three different cavitation numbers close 

to the condition of unbounded bubble growth. The cavitation inception number for each case, 

shown in Table 2, was determined as the highest cavitation number that leads to an unbounded 

bubble growth. In the classical explanation, the unbounded bubble growth results in the vaporous 

cavitation while the limited bubble growth is described as gaseous cavitation. Using this simple 

model, we found that the predicted cavitation inception numbers for all cases are very close to 

those predicted by using the simple engineering criterion, σi = −Cpmin and can be scaled by the 

relationship described earlier in Equation (2.13).  The results, shown in Figure 4, obviously do 

not explain measured scaling effects in the experimental observations.   

 

R0 Small Scale Medium Scale Large Scale 
10µm σi = 4.467 σi = 13.212 σi = 24.796 
50 µm σi = 4.471 σi = 13.214 σi = 24.796 
100µm σi = 4.473 σi = 13.214 σi = 24.796 

Table 2. Cavitation inception index using the classical spherical model approach 

0

5

10

15

20

25

30

0 500 1000 1500

Re^0.4

σ

 

Figure 4.  Correlation between cavitation inception indices and the Reynolds number obtained with the 
classical model and compared with the curves of -Cpmin 
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4.3 Scaling of Inception Using the “Modified” Rayleigh-Plesset Model  
 

The cavitation inception results obtained in Table 2 are mainly due to accepting that the 

bubble can grow unboundedly once it reaches the vortex center. To account for the fact that the 

average pressure that is imposed on the bubble increases as the bubble grows at the vortex axis, 

the “corrected” spherical model described in Section 3.11(averaging the field pressure on the 

bubble surface) was then applied to determine the inception number for each case. Figure 5 

shows the bubble radius variation and the acoustic pressure for R0=50µm and σ=4.471 in the 

small-scale case (one of the cases in Figure 4).  
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Figure 5. Bubble radius versus time and generated acoustic pressure at a distance of  30 cm. using the 
“modified” Rayleigh-Plesset equation (bubble released at 3ac) 

It is seen that with the modified model both the bubble size and the acoustic pressure 

reach finite values instead of increasing unboundedly. Therefore, we conducted with this 

modification a series of computations to obtain the maximum values of the bubble size and the 

acoustic pressure for different cavitation numbers. To reduce the computational time, all the 

computations were conducted with a closer release location than in Figures 4 and 5, D=0.5ac.  
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To consider the effect of varying the release location on the results, we consider the 

following.  The same bubble size, 50 µm is released at 0.5 ac with the assumption that the initial 

size corresponds always to the local static equilibrium. Figure 6 shows the corresponding bubble 

radius variation and the acoustic pressure. Compared to Figure 5, one can see that the maximum 

bubble size and acoustic pressure are smaller for the bubble released at D=0.5ac. This is because 

the bubble released at D=0.5ac actually contains more gas (is effectively smaller) than the 50µm 

bubble released at D=3ac. To correct for this we use the static equilibrium at both release 

locations and at the free stream location, and correct the initial bubble size, 0R , at the selected 

release location by solving  

 
3

3 2
0 02 0

w v w v

RR R p
p p p p

γ ∞
∞

  
+ − =    − −   

, (4.3) 

where R∞  is the bubble size at infinity.  
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Figure 6.  Bubble radius versus time and generated acoustic pressure at a distance of 30 cm.  using the 
“modified” Rayleigh-Plesset equation (bubble released at 0.5ac) 

 

 If Equation (4.3) is applied to correct the initial bubble size to simulate the same nuclei 

( 0R =50µm) at D=3ac, one will have 0R =96.8µm and the bubble radius variation and the 
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acoustic pressure become as shown in Figure 7. One can see that although both the maximum 

bubble size and acoustic pressure are now closer to those of Figure 5, a slight over-correction is 

found due to the neglect of dynamic effects when deriving Equation (4.3). 

From here on we will apply such a correction to the initial bubble size if we do any 

comparisons between two different initial release locations. 
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Figure 7. Bubble radius versus time and generated acoustic pressure at a distance of  30 cm. using the 
“modified” Rayleigh-Plesset equation (The bubble of an initial radius of 96.8 µm and released at 0.5ac is 

equivalent to the 50 µm bubble of Figure 5 released at 3ac) 

 

Figures 8-10 show the maximum bubble size and acoustic pressure measured at 30cm 

from the vortex center versus the cavitation number for four different initial nuclei sizes (R0=10, 

25, 50 and 100µm) and for the three scales: small, medium and large. All the computations were 

conducted by releasing the bubble at D=0.5ac. It is important to note that the curve of maximum 

bubble radius for R0=10µm in the small scale is flat, i.e. the bubble does not have explosive 

growth even for the smallest cavitation number considered. From previous studies (Chahine and 

Shen 1986), it is known that for bubbles to have explosive growth the encountered pressure must 

be smaller than the critical pressure. Since the current model assumes that the pressure in the 

flow field cannot become negative, the bubble will not have an explosive growth if its critical 

pressure is negative.   
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Figure 8.  Maximum Bubble radius, and maximum emitted pressure as a function of the cavitation number 
for a constant core size.  Small Scale. 

Figure 9.  Maximum Bubble radius, and maximum emitted pressure as a function of the cavitation number 
for a constant core size.  Medium Scale. 

Figure 10.  Maximum Bubble radius, and maximum emitted pressure as a function of the cavitation number 
for a constant core size.  Large Scale. 
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Based on these curves one can determine the cavitation inception number once the optical 

or acoustic threshold criterion is defined. Tables 3 and 4 show examples of the cavitation 

inception number results obtained for all scales using different illustrative criteria. It is seen that 

different cavitation inception criteria may lead to significant differences in the resulting 

cavitation inception numbers. It is also found that the initial nucleus size, R0, can significantly 

influence the prediction of the cavitation inception number. For stringent (very good detection 

schemes) acoustic or optical criteria (e.g. Pmax>90db or Rmax>100µm), the cavitation inception 

numbers are definitely not well scaled by Equation (4.2) especially for the smaller nuclei. 

However, for looser (high levels needed for detection) criteria (e.g. Pmax>130db or 

Rmax>400µm), we find that the cavitation inception number is insensitive to the nuclei size and is 

generally well scaled by Equation (4.2). 

 

ACOUSTIC CRITERION Small Scale Medium Scale Large Scale 

-Cpmin 4.47 13.22 24.80 

R0 = 10µm No Inception σi = 13.20 σi = 24.76 

R0 = 25µm σi = 4.45 σi = 13.21 σi = 24.77 

R0 = 50µm σi > 7 σi = 13.21 σi = 24.78 
Pmax > 90db; 

R0= 100µm σi > 9 σi > 15 σi > 26 

R0 = 10µm No Inception σi = 13.17 σi = 24.76  

R0 = 25µm σi = 4.36 σi = 13.18 σi = 24.76  

R0 = 50µm σi = 4.36 σi = 13.18 σi = 24.76  
Pmax> 130db; 

R0= 100µm σi = 4.37 σi = 13.19 σi = 24.76 

 

Table 3. Cavitation inception index obtained using various illustrative acoustic criteria for calling inception 
and the “improved” spherical model approach 
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OPTICAL CRITERION Small Scale Medium Scale Large Scale 

-Cpmin 4.47 13.22 24.80 

R0 = 10µm No Inception σi = 13.20 σi = 24.77 

R0 = 25µm σi = 4.45 σi = 13.23 σi = 24.82 

R0 = 50µm σi = 4.51 σi = 13.42 σi > 25 
Rmax> 100µm 

R0= 100µm σi  > 5 σi > 14 σi > 25.5 

R0 = 10µm No Inception σi = 13.19 σi = 24.78 

R0 = 25µm σi = 4.41 σi = 13.21 σi = 24.78 

R0 = 50µm σi = 4.41 σi = 13.21 σi = 24.78 
Rmax> 400µm 

R0= 100µm σi = 4.42 σi = 13.23 σi = 24.82 

Table 4. Cavitation inception index obtained using various illustrative optical criteria for calling inception 
and the “improved” spherical model approach 

 

Figure 11 shows the amplitude spectrum obtained from the Fourier transform of the 

acoustic pressure for R0=50µm and σ = 4.471 in the small-scale case when the bubble is released 

at the two locations. 
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Figure 11.  Influence of the location of initial bubble release on the amplitude spectrum of the emitted sound. 
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4.4   Effect of Vortex Core Diffusion 
 
4.4.1 Bubble Dynamics 
 
In the previous section the pressure along the vortex axis was assumed to remain constant. This 

allowed the bubble to reach some equilibrium status after reaching the vortex center. Therefore, 

the acoustic emission in this case was mainly from the bubble growth and subsequent 

oscillations. The bubble collapse, however, is commonly known to generate most of the 

cavitation acoustic noise and occurs after the grown bubble encounters an adverse pressure 

gradient during its motion. To account for this effect, a diffusive line vortex was specified by 

taking into account vortex core radius decrease along the vortex axis as shown in Figure 12. The 

circulation of the vortex was kept constant. Figure 13 shows the resulting bubble radius 

variations and the acoustic pressure versus time during the bubble capture for R0=50µm and σ = 

4.471 in the small-scale case. 
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Figure 12.  Diffusion of the vortex core through increase of its radius along the longitudinal direction. 

 
It is seen that the bubble grows significantly then collapses when it encounters the 

adverse pressure gradient. Due to the presence of gas in the bubble and to the absence of acoustic 

energy loss due to liquid compressibility it pursues many successive oscillations. This leads to 

high frequency oscillations and stronger acoustic emission than that generated during growth. It 

is interesting to isolate the importance of the slip-velocity term in Equation (3.3). The result for 

neglecting the slip-velocity term is shown in Figure 14. One can see that stronger bubble 

oscillations occur in this case resulting in extremely high acoustic noise during multiple 

collapses.    
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Figure 13.  Bubble radius versus time and resulting acoustic pressure in a vortex line with diffusion. 
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Figure 14. Bubble radius versus time and resulting acoustic pressure in a vortex line with diffusion when 
bubble slip velocity effects are neglected (same conditions as in Figure 13.)  
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4.4.2 Bubble Trajectory 
 

It is also interesting to see how the bubble collapse influences the trajectory. From 

Equation (3.8) we know that the rate of change of the bubble volume is important to the 

trajectory when variation rate is large. The bubble growth generates a force, which impedes the 

bubble motion along its trajectory while the bubble collapse generates a force, which will speed 

up the bubble in the direction of its motion.  For the spiral motion, one can expect that the bubble 

growth helps the bubble entrapment while the bubble collapse acts in the opposite way.  Figure 

15 shows that the spiral-like bubble trajectory influenced by the strong collapse during capture 

by the line vortex for R0=100µm and σ = 13.215 in the middle-scale case. From Figure 16, 

which represents the same phenomenon in a different way, we can see that the bubble moves 

away from the vortex center when the very first bubble collapse occurs. It then returns and the 

cycle repeats. 
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Figure 15.  Bubble helicoidal trajectory during its capture by the diffusive vortex showing deviation from the 
helicoidal motion at the bubble collapses. 

Medium Scale
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Figure 16.  Bubble radius versus time and corresponding encounter pressure and motion towards the vortex 
line axis.  Distance to the axis versus time shows repulsion at the successive bubble collapses. 

 

4.4.3 Frequency Spectra 
 

Figure 17 compares the acoustic signals of both constant and diffusive core cases in the 

frequency domain. One can see that in the diffusive core case the higher frequencies have much 

higher amplitudes when compared to the constant vortex core case. It is important to note that 

the frequency of the oscillations increases with successive collapses. This can be more clearly 

seen using wavelet and Hilbert transformations (See Appendix) as illustrated by Figure 18. 

In order to understand this continuous increase in the frequency, we conduct an order of 

magnitude analysis of the expected bubble oscillations frequency based on the Rayleigh Period 

T, 

 11 1 .
2 2

pF T
R ρ

− ∆= =       (4.4) 

Figure 19 shows F versus time computed using two different definitions of p∆ . The blue 

curve was obtained by using vp p p∆ = − , while the red curve was obtained by using 

v gp p p p∆ = − − +2γ/R. p is the pressure seen by the bubble during its trajectory, and will be 
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dubbed, pencounter.  Both graphs show an initial increase of the frequency with time; however, the 

red curve reaches a maximum that is not seen in the wavelet or Hilbert spectra in Figure 16. 
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Figure 17. Comparison of the amplitude spectra of the acoustic pressure generated in a constant and a 
diffusive vortex core for a 50mm bubble in the small-scale numerical test. 

 
Figure 18. Wavelet and Hilbert transforms of the acoustic pressure generated in a constant and a diffusive 

vortex core for a 50mm bubble in the small-scale numerical test. 

 
 

Using  
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max,

1 ,
2
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i
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P PF
R ρ

−=  (4.5) 

appears to give a very good approximation of the frequency of the acoustic signals. 
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Figure 19.  Bubble radius and encounter pressure versus time for a 50mm bubble.  Blue curve gives the order 
of magnitude of the generated frequency using Equation (4.5).  Red curve gives the order of magnitude of the 
generated frequency using Equation (4.4) with 2 / .v gp p p p Rγ∆ = − − + . 

 

4.4.4 Influence of the initial Bubble Radius and of the Cavitation Index 
 

One should note that for the constant vortex core case the bubble will always reach the 

minimum pressure inside the vortex core axis as long as the computational domain and time is 

large enough. Unlike in the constant vortex core case, bubbles with small initial size may not be 

able to enter the vortex center before the vortex core starts to diffuse. In such a case the bubble 

may not grow enough and then experience a strong collapse, which requires that the bubble 

grows to some large size relative to the initial size. Figure 20 shows the bubble radius variation 

and the acoustic pressure versus time during capture for R0=10µm and σ = 4.471 in the small-
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scale case. Compared to Figure 13, one can see a very different bubble collapse between 

R0=10µm and 50µm.  
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Figure 20.  Small bubble size behavior.  Bubble radius variations and acoustic pressure versus time during 
capture for R0=10µm and σ = 4.471 in the small-scale case 

 

As the bubble’s initial size is increased, the maximum growth size that the bubble can 

reach is increased. As a result, when the bubble collapses, the amplitude of the acoustic pressure 

increases for the larger bubbles but the frequency decreases. For example, Figures 21-23 show 

the bubble radius variation and the acoustic pressure versus time during capture for different R0 

at σ = 4.471 in the small-scale case. By comparing Figures 20-23, one can see three major types 

of behavior of the bubble collapse. For small-sized bubbles, the bubble collapses without strong 

volume rebound and generates very high frequency but very low amplitude noise. For mid-sized 

bubbles, the bubble collapses with strong volume rebound and generates high frequency and 

high amplitude noise. For large-sized bubbles, the frequency of the bubble collapse is close to 

that of the bubble growth. These three different behaviors are also found in the medium and large 

scales.  
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By changing the cavitation number for the same nuclei size, one can also find these same 

three different behaviors. Examples are shown in Figures 24-26 for R0=10µm at different 

cavitation numbers in the large scale. 
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Figure 21. Small bubble size behavior.  Bubble radius variations and acoustic pressure versus time during 
capture for R0=20µm and σ = 4.471 in the small-scale case 
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Figure 22. Medium bubble size behavior.  Bubble radius variations and acoustic pressure versus time during 
capture for R0=100µm and σ = 4.471 in the small-scale case 
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Figure 23. Large bubble size behavior.  Bubble radius variations and acoustic pressure versus time during 
capture for R0=200µm and σ = 4.471 in the small-scale case 
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Figure 24.  Bubble behavior for high cavitation numbers.  Bubble radius variations and acoustic pressure 
versus time during capture for R0=10µm and σ = 24.79 in the large-scale tests. 
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Figure 25.  Bubble behavior for average cavitation numbers.  Bubble radius variations and acoustic pressure 
versus time during capture for R0=10µm and σ = 24.73 in the large-scale tests. 
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Figure 26. Bubble behavior for low cavitation numbers.  Bubble radius variations and acoustic pressure 
versus time during capture for R0=10µm and σ = 24.68 in the large-scale tests. 

4.3.2 Scaling of Tip Vortex Cavitation Inception  
 

A series of computations similar to those in the previous section were conducted to 

obtain the maximum size of the bubble and the maximum acoustic pressure versus the cavitation 

number. Three initial nuclei sizes (R0=10, 50 and 100µm) were used for all three scales. Figures 

27-29 show that the maximum bubble size and the maximum acoustic pressure measured at 30 

cm from the vortex center at the release location versus the cavitation number for the small, 

medium, and large scales. These curves were also obtained by releasing the bubble at 0.5ac from 

the vortex center. It is seen that the maximum radius curves are not significantly different from 

those of constant core case for larger initial bubble sizes (R0=25, 50 and 100µm) for σ >4.38 in 

the small scale. Below σ =4.38 the values of maximum radius increase abruptly. By checking the 

trajectory of the bubble (e.g. see Figure 30 for R0=50µm at σ =4.38 in the small scale), one can 

find that the bubble becomes trapped longitudinally on the vortex axis due to the presence of the 

adverse pressure gradient, ,p x∂ ∂ at the stream wise location where the vortex diffusion starts to 

occur. This allows the bubble to grow to a much larger size because the effect of slip velocity is 

significant.  
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The bubble, however, is not trapped for the medium and large scales (Figures 28 and 29) 

because the adverse pressure gradient force is not large enough in these cases to stop the bubble 

downstream motion. As a result, the maximum radius curves for larger initial bubble sizes 

(R0=25, 50 and 100µm) in the medium and large scales are very close to those of the constant 

vortex core case. For the smaller initial bubble size (R0=10µm), however, the curves are 

significantly different from those of constant vortex core because the bubble with smaller initial 

size may not be able to enter the vortex center before the vortex core diffuses. To allow the 

smaller initial bubble size to enter the vortex center before the vortex core diffuses, further 

decreases of the cavitation number are required. Unlike the maximum radius curves, the 

maximum acoustic pressure curves of diffusive vortex core are all differ significantly from those 

of the constant vortex core, except at high cavitation numbers where the acoustic signal created 

by the bubble collapse is not stronger than that of growth.  
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Figure 27.  Maximum Bubble radius, and maximum emitted pressure as a function of the cavitation number 
for a diffusive vortex.  Small Scale. 

 

Figure 28. Maximum Bubble radius, and maximum emitted pressure as a function of the cavitation number 
for a diffusive vortex.  Medium Scale. 

 

Figure 29. Maximum Bubble radius, and maximum emitted pressure as a function of the cavitation number 
for a diffusive vortex.  Large Scale. 
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Figure 30.  Trajectory of a 50 µm bubble in a diffusive vortex core indicating possibility for bubble capture 
at some values of sigma.  This results in much greater bubble growth.  

 
 

 

 

Tables 5 and 6 show the cavitation inception numbers for all the cases considered by 

choosing the same criteria as in Tables 3 and 4. Unlike the constant vortex core case in which 

one can choose appropriate acoustic and optical criteria such that the cavitation inception 

number can be well correlated by Equation (4.2), it is here very difficult to define such acoustic 

or optical criteria for the diffusive vortex core case. 
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ACOUSTIC CRITERION Small Scale Medium Scale Large Scale 

-Cpmin 4.47 13.22 24.80 

R0 = 10µm σi = 4.37 σi = 13.15 σi = 24.59 

R0 = 25µm σi = 4.71 σi = 13.38 σi = 24.88 

R0 = 50µm σi > 6 σi > 13.5 σi > 25 
Pmax > 90db; 

R0= 100µm σi > 7 σi > 14 σi > 25.5 

R0 = 10µm No Inception σi = 13.13 σi =24.56  

R0 = 25µm σi = 4.45 σi = 13.22 σi =24.78  

R0 = 50µm σi = 4.47 σi = 13.25 σi =24.80  
Pmax> 130db; 

R0= 100µm σi = 4.49 σi = 13.32 σi = 24.85 

 

Table 5. Cavitation inception index obtained using various illustrative acoustic criteria for calling inception 
and the “improved” spherical model approach in the case of the diffusive vortex. 

 
 

OPTICAL CRITERION Small Scale Medium Scale Large Scale 

-Cpmin 4.47 13.22 24.80 

R0 = 10µm No Inception σi = 13.13 σi= 24.59 

R0 = 25µm σi = 4.45 σi = 13.23 σi = 24.82 

R0 = 50µm σi = 4.49 σi > 13.5 σi > 25 
Rmax> 100µm 

R0= 100µm σi > 5.5 σi > 14 σi > 25.5 

R0 = 10µm No Inception σi = 13.12 σi = 24.56 

R0 = 25µm σi = 4.39 σi = 13.22 σi = 24.77 

R0 = 50µm σi = 4.41 σi = 13.22 σi = 24.78 
Rmax> 400µm 

R0= 100µm σi = 4.41 σi = 13.24 σi = 24.82 

Table 6. Cavitation inception index obtained using various illustrative optical criteria for calling inception 
and the “improved” spherical model approach in the case of the diffusive vortex. 
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4.5 Frequency Analysis 
 
   To study further the characteristics of the emitted noise during capture of a bubble in a 

vortex frequency one can apply a Fourier transformation to the pressure signals. Figures 31-33 

show the Fourier spectrum for different R0  for the small, medium and large scales. For each 

scale it is found that these curves can be categorized into three major groups according to their 

shapes.  

a) In the first group, the curves show two major peaks, one obtained during bubble 

growth and one during the collapse phases. This group appears in all scales for 

smaller nuclei sizes (R0 = 5 and 10µm). 

b) In the second group, the curves show a rather flat region at the high amplitude, which 

is mainly due to the subsequent collapses. This group appears in the small scale for R0 

= 20, 50 and 100µm.  

c) In the third group, the curves show only one major peak, which indicates the 

frequency of the bubble growth and collapse are very close. This is followed by a 

gradual classical power-law type decay of the spectrum. This group appears in the 

small scale for R0 = 200 and 500µm. 

These three groups can be also used to categorize the Fourier spectrum obtained for different σ  

with same R0. Figure 34 shows the Fourier spectrum for different σ  with R0=10µm in the large 

scale. 

Figure 31.  Amplitude spectrum for various initial nuclei sizes in the small-scale numerical tests at σ=4.471. 
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Figure 32. Amplitude spectrum for various initial nuclei sizes in the medium-scale numerical tests at σ=4.471. 

 

 

Figure 33.  Amplitude spectrum for various initial nuclei sizes in the large-scale numerical tests at σ=4.471. 
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Figure 34.  Amplitude spectrum for various cavitation numbers in the large-scale numerical tests and 
R0=10µm. 

 

Although the curves of the third group do not appear in the medium and large scale 

figures, one can expect them to occur for larger nuclei (R0 > 500µm). In fact, the curve of 500µm 

in the medium scale is a transition between the second and the third group. It is important to 

know what the peaks in the spectral domain correspond to. To identify these peaks we can 

estimate the frequency at the location of interest in the acoustic signal. Figures 35 and 36 show 

the correspondence between time and frequency domains for two cases. Figure 35 indicates that 

the two peaks appearing in the frequency domain for R0 = 10µm correspond to the acoustic 

signals generated at the bubble growth and collapse respectively. Although no strong peak is 

shown in frequency domain for R0 = 100µm, with this estimation we can still identify the 

location of the signal due to the first collapse (see Figure 36).  
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Figure 35.  Correspondence between acoustic signals and the peak frequencies in the Fourier spectrum. 
R0=10µm.  

 

Figure 36. Correspondence between acoustic signals and the peak frequencies in the Fourier spectrum. 
R0=100µm. 

Medium Scale R0=10µm σ=13.215

Medium Scale R0=100µm σ=13.215
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One disadvantage of the Fourier transformation is that it does not provide information 

regarding when in time the various spectral components appear. When the time localization of 

the spectral components is needed, either the wavelet or the Hilbert transformation can provide 

the time-frequency representation. Figures 37 and 38 show the frequency versus time by 

applying the wavelet and Hilbert transformations to the acoustic signal generated by R0 =10µm 

and 100µm in the medium scale. One can see both wavelet and Hilbert transformations provide 

time information where the interesting spectral components appear. By checking the time when 

the bubble growth and first collapse occur, one can identify the frequency of the first collapse 

easily and have the information as shown in Figures 35 and 36. 

From Equation (4.4) it is known that the frequency of the first collapse signal is 

controlled by the maximum radius and pressure gradient at the location where the vortex core 

starts to diffuse. By appropriately choosing the normalization factor one can well normalize the 

first collapse signal of the second group. Figures 39-41 show the spectra after normalization. The 

frequencies are normalized by:  

 ,mR
P

ρτ =
∆

 (4.6) 

and the amplitude of the spectrum is normalized by: 

 
2

,m mP R RA P
l l
τ ρ∆= = ∆  (4.7) 

where Rm is the maximum radius, l is the distance to the location where the acoustic signal is 

computed, and p∆ is the difference between the encounter pressure at the first and second bubble 

collapse (see Figure 42 for a definition sketch).  
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Figure 37. Pressure signal, wavelet and Hilbert transforms for a 10µm bubble in a diffusing vortex 

 

Figure 38. Pressure signal, wavelet and Hilbert transforms for a 100µm bubble in a diffusing vortex 
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Figure 39. Normalized amplitude spectra for various initial bubble radii in the small-scale tests. 

 
 

Figure 40. Normalized amplitude spectra for various initial bubble radii in the medium-scale tests. 
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Figure 41. Normalized amplitude spectra for various initial bubble radii in the large-scale tests. 
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Figure 42.  Bubble radius and emitted pressure versus time.  Definition sketch of the quantities, Rm and ∆P. 
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4.6 Effect of Compressibility 
 
   An important feature of the problem that should be kept in mind is that the spherical 

configuration of the bubble surface is unstable during the collapse, so that the analysis based on 

the assumption of spherical symmetry cannot be rigorously correct. Furthermore, the neglect of 

liquid compressibility and thermal damping effects, which become important in the subsequent 

collapses.   

All the results presented above were obtained by using the incompressible Rayleigh-

Plesset equation. Since it is known that compressibility effects are important during the bubble 

collapse, it is interesting to compare the results obtained by using the compressible equivalent to 

the Rayleigh-Plesset equation. Comparing Figures 43a and 43b, one can see that the bubble 

behaves almost the same until after the first collapse. The strength of the subsequent collapses is 

attenuated significantly when compressibility is taken into account. Figure 44 illustrates these 

differences in the frequency domain. The normalized curves in the frequency domain for the 

medium scale are shown in Figure 45.  We can see that the normalized bring together all spectra 

of  the same type indicating that the scaling chosen is adequate. 

Figure 43. Comparison of the bubble radii and the acoustic pressures versus time when compressible effects 
are taken into account or when they are ignored. 
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Figure 44.  Comparison of the amplitude spectra when compressible effects are taken into account or when 

they are ignored. 

Figure 45.  Normalized frequency spectra for different initial nuclei sizes when compressible effects are taken 
into account. 
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4.7 Effect of Turbulent Fluctuations 
 

It is know that the tip vortex in the near field where the cavitation inception occurs is 

highly unsteady due to turbulent fluctuations (Green and Acosta 1991). Lacking unsteady 

information in the tip vortex core usually leads to under-predicting the cavitation inception 

number because the turbulent fluctuations are expected to amplify bubble oscillations during 

growth and collapse. To consider the effect of turbulent fluctuations, artificial sinusoidal 

fluctuations are added to the original circulation Γ0 such that  

 0( ) [1 sin(2 )]t t  G = G + , (4.8) 

where α is the amplitude and ω is the fluctuation frequency. Figure 46 shows the pressure that a 

50µm bubble encounters during capture with and without the artificial sinusoidal fluctuations 

(α=0.03, ω=1khz) for σ =4.8 in the small-scale case. It is seen from the Figure 47 that without 

turbulent fluctuations the bubble grows to only a relatively small size when it reaches the vortex 

axis. As shown in Figure 48, the maximum bubble size and the amplitude of the acoustic 

emission are significantly increased when the artificial sinusoid fluctuations are added.  
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Figure 46. Encounter pressure experienced by the bubble during its capture by the vortex in the presence 
and in the absence of imposed pressure fluctuations. 
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Figure 47.  Bubble radius versus time during bubble capture in the vortex in the presence and in the absence 

of the pressure fluctuations described in Figure 46. 
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Figure 48.  Noise spectra during bubble capture in the vortex in the presence and in the absence of the 

pressure fluctuations described in Figure 46. 
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4.8 Effect of Non-Spherical bubble deformation 
 
 It was hypothesized in Chahine(1990, 1995) that the non-spherical deformation and 

bubble breakup contribute to the high frequency noise. To demonstrate the influence of non-

spherical deformation, we used the non-spherical model to simulate bubble behavior in the 

small-scale numerical experiment case. The computations were conducted by releasing bubbles 

within the vortex core at 0.8ac from the vortex center for both spherical and non-spherical 

models. The initial gas pressure of the bubble is taken to be the same as at infinity. The bubble 

deformation was simulated using our non-spherical model, 3DYNAFSTM, for R0 = 50µm in the 

small-scale conditions and is shown in Figure 49. It is seen that as expected the bubble volume 

oscillates and changes in time, but also that a re-entering jet is formed on the bubble surface due 

to the local pressure gradients around the bubble. The computation is terminated when the jet 

touches the other side of the bubble surface shortly after the bubble first rebound at t = 0.037ms. 

A comparison between the spherical and the non-spherical bubble models is shown in Figures 

50-51. It is seen that bubble volume variations obtained from both models are matched well until 

the bubble rebound (Figure 50). However, the bubble trajectory predicted by the non-spherical 

model starts to deviate from the prediction of the spherical model as soon as non-spherical 

deformations become significant (Figure 51). Of most interest is that high frequency oscillations 

in the acoustic pressure are observed when the jet touched the other side in the non-spherical 

model as shown in Figure 52.  

Another source of the high frequency noise may come from two parts of the bubble 

surface colliding. To simulate such an effect a computation was conducted with our 

axisymmetric version, 2DYNAFSTM , of the non-spherical model, where the bubble with initial 

radius R0 = 50µm is released at the vortex center in the small-scale numerical experiment. The 

initial gas pressure of the bubble is also taken to be the same as at infinity. The bubble contours 

at various time steps during growth and collapse are shown in Figures 53a and 53b. Figure 53c 

shows, using the bubble poles and the side node, that the bubble first elongates at the beginning 

of its growth, then starts to thin at its waist and tends to separate into two. A high frequency 

acoustic signature is then observed at about t = 0.6ms as shown in Figure 53d when the bubble 

surfaces collide on the axis. Then the bubble rebounds and re-collapses forming two jet on the 

axis of rotation, and emits a very strong high frequency sound. 
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The high frequency acoustic signatures due to non-spherical deformation as shown above 

are important and may be the major source of cavitation inception noise. This may lead to a 

significant discrepancy in the prediction of cavitation inception number between the spherical 

and non-spherical models if an acoustic criterion is used to define the cavitation inception event.  
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Figure 49.  Bubble shape deformation during its capture in the vortex as simulated with 3DYNAFSTM. 
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Figure 50. Comparison of bubble volume versus time between spherical and 3D model using 3DYNAFSTM. 
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Figure 51.  Comparison of bubble trajectory versus time between spherical and 3D model using 3DYNAFSTM. 
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Figure 52.  Comparison of acoustic pressure versus time between spherical and 3D model using 3DYNAFSTM. 
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Figure 53.  Simulation of bubble dynamics on the vortex axis. a) Bubble growth, elongation and constriction 
at waist resulting in water-water impact and high pressure spike as shown in d).  b) Bubble collapse along 

axis with two jet formation. c) Pole motion and d) emitted acoustic pressures. 
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5. CONCLUSIONS 
 

We have applied in this study different bubble dynamics models to predict the cavitation 

inception of the tip vortex flow. We have shown that using the conventional engineering 

definition of cavitation inception and the classical spherical model cannot explain the scaling 

effect due to the nuclei size distribution, which are observed in the experiments. The cavitation 

inception number predicted by using our “improved” spherical model, however, showed that the 

nuclei sizes play an important role in scaling the cavitation inception between various scales, 

especially when the water contained bubbles larger than some critical size depending on the 

experimental conditions.  

We have identified the sources of high frequency acoustic emission: initial bubble 

growth, and more importantly, subsequent bubble collapse when the bubble reaches the region 

where the vortex diffuses, and where multiple rebounds and collapses ensue. The adverse 

pressure gradient and pressure fluctuations along the vortex core were found to significantly 

increase both the amplitude and frequency of the acoustic emission during bubble capture by the 

vortex. 

We also applied non-spherical bubble dynamics models to demonstrate the importance of 

the non-spherical deformation on the prediction of cavitation inception. Non-spherical 

deformations during bubble capture by the line vortex appear to result in high frequency acoustic 

signatures when the re-entering jet touches the bubble surface. After the bubble enters the vortex 

center, high frequency acoustic signatures are also observed when liquid-liquid collision occurs 

during non-spherical deformation along the vortex axis. 
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6. APPENDIX 
 
6.1 A.1  Derivation of the Modified Rayleigh-Plesset Equation  
 

The velocity potential of an oscillating and moving spherical bubble can be written as the 

sum of the potential of a source representing the oscillations and a dipole representing the flow  

about a translating sphere.  In the reference frame of the moving bubble with a velocity U, we 

can express φ  as: 

2 3

2
1 cos
2

R R RU r
r r

φ θ
 

= − + +  
 

,    (A.1) 

where U is the relative velocity between the bubble and the liquid (slip velocity). Here we 

assume the bubble is small so that the background flow can be treated as a uniform flow around 

the bubble locally. In the absolute reference frame, we have 

2 3

2 cos
2

R R U R
r r

φ θ= − + .     (A.2) 

The time derivative of the velocity potential is 

2 2 3 2

2 2
2 1 3cos cos

2 2
RR R R U R R R U

t r t r r
φ θ θ∂ − ∂= − + +

∂ ∂
,  (A.3) 

and the velocity vector components are given by:  

2 3

2 3 cos ,φ θr
R R Ru U

r r r
∂= = −
∂

     (A.4) 

3

3
1 1 sin .

2θ
φ θ
θ

Ru U
r r

∂= = −
∂

     (A.5) 

At r R=  we have 

2 1 32 cos cos
2 2

UR RR R RU
t t
φ θ θ∂ ∂= − − + +

∂ ∂
,   (A.6) 

cos ,θru R U= −      (A.7) 

1 sin
2θ θu U= − .     (A.8) 
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At r → ∞  we have 

0φ
t

∂ =
∂

,        (A.9) 

0,ru =      (A.10) 

0θu = .     (A.11) 

From Bernoulli’s equation we have 

2 21 1
2 2r R r

P P
t t
φ φ

ρ ρ= →∞

   ∂ ∂+ + = + +   ∂ ∂   
u u ,  (A.12) 
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2 2 2 23 1 1 1 3cos sin
2 2 2 2 8

RU P PRR R R RU U U
t

θ θ
ρ

∞∂ − + = + + − + ∂ 
.  (A.14) 

Since we assume that the bubble remains spherical, we can obtain an average equation by 

integrating over the spherical bubble surface. For the terms with cosθ  we obtain: 

2
2 0 0

2

0

1 1 1 1cos 2 sin cos sin
2 2 44

1 cos 0.
4

U UR RU R d R RU d
t tR
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π π
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∫ ∫
 

 (A.15) 

For the term with 2sin θ  we obtain: 

2 2 2 3
2 0 0

3 2

0

1 3 3cos 2 sin sin
8 164
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∫ ∫
   (A.16) 

We finally have the modified Surface Averaged Rayleigh-Plesset equation as 

2 23 1
2 4

RP PRR R U
ρ

∞−+ = + .     (A.17) 

 



DYNAFLOW, INC.                                                       Report 98007-1 p. 64  
 
 
6.2 A.2  Fourier Transform 
 

The finite Fourier transformation is defined by 

 2
0( , ) ( )T i ftP f T p t e dtπ−= ∫ , (A.18) 

where T is the time duration for the finite Fourier transformation, p(t) is the acoustic signal, f is 

the frequency and P(f,T) is the signal in the frequency domain. It is noted that for the bubble 

captured by the diffusive vortex core, the acoustic signal is only significant during bubble 

growth and collapse. After strong collapse the acoustic signal essentially decays to zero. Such 

acoustic signal can be described as a deterministic transient signal. For the case of a 

deterministic transient signal p(t), 0 t T≤ ≤ , it is common to describe the frequency content of 

the signal in terms of its Fourier magnitude spectrum |Fx( f )|, 

 
2 ( , ), 0,

( ) ( , ), 0,
0, 0,

x

P f T f
F f P f T f

f

>
= =
 <

. (A.19) 

Assuming the duration T equals or exceeds the duration of all significant values of the 

transient, the finite Fourier transform essentially yields sample values of the exact Fourier 

transform of the transient signal. This follows because the values of the transient outside the time 

interval of the computation is zero and, hence, all values of the transient are known from minus 

to plus infinity. 
 
6.3 A.2  Wavelet and Hilbert Transforms 
 

There are a few methods used for processing non-stationary data. Most of them still 

depend on Fourier analysis - they are limited to linear systems only. The adoption of any such 

method is almost strictly determined according to the special field in which the application is 

made.  

The spectrogram is the most basic method, which is nothing but a limited time window 

width Fourier spectral analysis. By successively sliding the window along the time axis, one can 

get a time-frequency distribution. Since it relies on the traditional Fourier Spectral analysis, one 

has to assume the data to be piecewise stationary. The wavelet approach is essentially an 

adjustable window Fourier Spectral analysis. For specific applications, the basic wavelet 
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function can be specified according to its special needs. But, the wavelet form has to be given 

before the analysis. In most common applications, the Morlet wavelet is defined as Gaussian 

enveloped sine and cosine wave groups, ψ(x)=C*exp(-x2/2)*cos(a*x). In the commercial 

MATLAB routine, a equals to 5. In the wavelet analysis used in the present report, a is 5.5, i.e., 

the cosine wave groups with 5.5 waves. Continuous or discrete, the wavelet analysis is basically 

a linear analysis. A very appealing feature of the wavelet analysis is that it provides a uniform 

resolution for all frequency scales. Limited by the size of the basic wavelet function. There are 

other procedures used to deal with transient data analysis that one can find , for instance in 

Bendat and Piersol's (1986) book or Cohen's (1995) book on Time-frequency analysis. 

Huang, et al (1998), have introduced a general method that requires two steps in analyzing 

transient signals. The first step is to preprocess the data by the empirical mode decomposition - 

data is decomposed into a number of intrinsic mode function (IMF) components. The second 

step is to apply the Hilbert transform to the decomposed IMFs and construct the energy-

frequency-time distribution, designated as the Hilbert Spectrum. This procedure provides the 

instantaneous frequency and energy rather than the global frequency and energy defined by the 

Fourier spectral analysis. A brief discussion of the procedure follows. 

The necessary conditions for us to define a meaningful instantaneous frequency are that 

the functions are symmetric with respect to the local zero mean and have the same number of 

zero crossings and extrema. IMF is sought that satisfies two conditions:  

(1) in the whole data set, the number of extrema and the number of zero crossings 

must either equal or differ at most by one; and  

(2) at any point, the mean value of the envelop defined by the local maxima and 

envelope defined by the local minima is zero.  

With this definition, the IMF in each cycle, defined by the zero crossing, involves only one mode 

of oscillation, no complex riding waves are allowed. An IMF is not restricted to a narrow band 

signal and it can be both amplitude and frequency modulated. In fact, it can be non-stationary. 

Therefore, the decomposition is based on the assumptions:  

(1) the signal has at least two extrema - one maximum and one minimum;  

(2) the characteristic time scale is defined by the time lapse between the extrema; and  

(3) if the data were totally devoid of extrema but contained only inflection points, then it 

can be differentiated once or more times to reveal the extrema.  
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The essence of the method is to identify the intrinsic oscillatory modes by their characteristic 

time scale in the data empirically, and then decompose the data accordingly. Contrary to other 

methods, this method is intuitive, direct, a posteriori and adaptive, with the basis of the 

decomposition based on and derived from the data. 

Having obtained the intrinsic mode function components, we will have no difficulties in 

applying the Hilbert transform to each component and computing instantaneous frequencies. 

After performing the Hilbert transform on each IMF component, we can express the data in the 

following form:  

1
( ) ( ) exp( ( ) )

n

j j
j

X t a t i w t dt
=

=∑ ∫       (A.20) 

 This equation gives both amplitude and frequency of each component as function of time. The same data if 

expanded in Fourier representation would be 

 

1

( ) exp( )j j

j

X t a iw t
∞

=

=∑        (A.21) 

with both aj and ωj constants. 

The contrast between these two equations is that the IMF represents a generalized Fourier 

expansion. The variable amplitude and the instantaneous frequency have not only greatly 

improved the efficiency of the expansion, but also enabled the expansion to accommodate non-

stationary data such as the collapse of a bubble in a given flow field. 
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