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ABSTRACT
A 3-D thick-shell contrast agent dynamics model was

developed by coupling a finite volume Navier-Stokes solver,
DF-UNCLE

, and a potential Boundary Element Method flow
solver, 3DYNAFS, to simulate the dynamics of thick-shelled
contrast agents subjected to pressure waves. The 3-D model was
validated using a spherical thick shell model validated by
experimental observations. We then utilized this model to study
shell break-up during non-spherical deformations resulting from
multiple contrast agent interaction or the presence of a nearby
solid wall. Our simulations indicate that the thick viscous shell
prevents the contrast agent from forming a reentrant jet, as
normally observed for an air bubble oscillating near a solid wall.
Instead, the shell thickness varies significantly from location to
location during the dynamics and this could lead to break up due
to local shell thinning and stretching.

1. INTRODUCTION
Ultrasound contrast agents are encapsulated microbubbles

usually formed of a high molecular weight gas core and a
viscous shell [1]. A wide variety of materials have been used for
the shell material such as oils, lipids, rigid polymers, and
albumins. Ultrasound contrast agents, originally developed to
enhance diagnostic imaging, have recently been incorporated
into therapeutic applications. The capability of delivering drug
to the targeted area makes therapeutic ultrasound contrast agents
attractive to chemotherapy drug development because many
chemotherapy drugs are toxic to normal tissues. For therapeutic
ultrasound contrast agents, the drug is suspended within a highly
viscous thick liquid shell [2]. The highly viscous shell stabilizes
the encapsulated bubble and remains inert until the contrast
agent reaches a specific target. The encapsulated microbubble is
then excited with an appropriate acoustic amplitude and
frequency, to get it to break up and release the drugs. A right
selection of shell material and thickness and an appropriate use
of ultrasound renders the contrast agents powerful targeted drug
delivery vehicles.

Characterization and understanding of the fragmentation
mechanism of a contrast agent is pivotal to its use for drug
delivery. The ultrasonic fragmentation threshold depends on the
initial size, shell thickness, and shell and gas properties [3,4].
Using a high intensity source and a large number of cycles may

be applicable to all types and sizes of contrast agent, but cannot
be applied safely in a clinical environment. Understanding of the
forces involved in the breakup of a particular type of agent is
therefore paramount to avoiding expensive and lengthy trial and
error experiments, and to minimizing risk to patients. Presently,
however, the dynamic mechanisms involved in shell breakup are
not well understood. These mechanisms become even more
complicated when the contrast agent ‘bubble’ interacts with
other agents and/or nearby tissues. From previous studies on
bubble dynamics [5-7], it is known that an oscillating bubble
near a boundary may form a re-entrant jet during its non-
spherical collapse depending on its distance to nearby bubbles
and boundaries. A similar behaviour is expected with the
ultrasound contrast agents. Indeed, micro-jetting and micro-
streaming associated with the agent violent non-spherical
breakup have been hypothesized as mechanisms to enhance drug
delivery [8].

Many studies have been dedicated to developing numerical
models for ultrasound contrast agents. Many models stem from
Church’s pioneering work [9]. With a thin-shell assumption the
constitutive equation of the shell was simplified and
incorporated into a generalized Rayleigh-Plesset formulation
with a balance of the radial stress at the solid-liquid interface.
The resulting model has been adapted to study the effect the
encapsulating shell properties on the microbubble dynamics
[10,11] and to estimate the acoustic nonlinearity of the liquid
containing encapsulated microbubbles [12]. More recently,
Sarkar et al. [13] proposed a further refined model. The
assumption of a thin solid shell is reasonable for contrast agents
designed for imaging purpose, with a very thin lipid or protein
shell on the order of a few nanometres. However, prototype
therapeutic contrast agents are designed with a thick liquid shell
to enable drug transport [2]. Allen et al. [14] extended Church’s
model to take into account the thick liquid shell and compared
their results with experimental measurements [15]. Their study
was however limited to spherical agents and no deformations
were included such as what results from the interaction between
the agent and its surroundings, or what happens at bursting
under a strong acoustic field.

To investigate the detailed dynamic mechanisms which
cause shell breakup, we have developed in the work presented
here a 3-D non-spherical finite-thickness shell model which
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couples a Navier-Stokes solver, DF-UNCLE
, derived from

UNCLE originally developed by Mississippi State University,
using a finite volume scheme and our potential flow solver,
3DYNAFS, using a Boundary Element Method (BEM). The
computational domain was subdivided into an inner domain
constituted of the thick viscous shell layer and an outer domain;
that of the liquid containing the shelled bubble. In the inner
domain we solve the Navier-Stokes equations to best describe
the dynamical behavior of the highly viscous liquid shell. In the
outer domain we use the Boundary Element Method. The main
advantage of using the BEM is its unique ability to provide a
complete solution in terms of boundary values without need to
discretize the whole computational domain. This reduces the
dimensions of the problem by one. This allows the model to
work on complicated boundary geometries and addresses non-
spherical deformations.

Figure 1. Sketch for illustration of the thick shell bubble
problem with domain decomposition.

2. NUMERICAL MODELS
2.1. Domain Decomposition

Consider a problem in which multiple ultrasound contrast
agent shelled bubbles interact with each other and with nearby
boundaries. The computational domain for this problem, as
illustrated in Figure 1, is composed of as many inner domains as
bubbles made each of a thick liquid shell around each gas
bubble and an outer domain covering the host liquid medium.
The outer domain includes any nearby walls or free surfaces. In
the model developed here, the inner domains bounded by the
gas-shell interfaces and the shell-liquid interface are volume
discretized. The flow field within the shell layer is solved using
the unsteady Navier-Stokes equations, while the flow field in the
outer domain, which is much less viscous, is solved assuming a
potential flow. The two solvers communicate with each other by
exchanging the values of the flow variables at the shell-liquid
interfaces.

2.2. Model for the Shell Liquid: Inner Domain
2.2.1.Governing Equation

To solve the highly viscous flow in the inner domain
composed of the viscous shells, the unsteady incompressible

Navier-Stokes equations are used. The continuity and
momentum equations in non-dimensional form and Cartesian
tensor notations are given as:
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viscous shell, u* and L* are the characteristic velocity and

length, s is the shell density, and s is its dynamic viscosity.

We select as characteristic length the contrast agent initial
inner radius. The characteristic velocity, u* =L*/T*, can be
selected by two ways depending on the characteristic time, T*,
which could be the inverse of the frequency of the imposed

acoustic waves or could be based on p the amplitude of the
imposed acoustic waves,
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In our computations T* was selected to be the smaller of the two
choices.

The effective stress tensor ij is given by:
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where ij is the Kronecker delta. The flow field in the inner

domain is directly simulated with Equations (1) and (2) without
any turbulence model because the Reynolds number is very
small and the flow is laminar for all cases studied.

In order to simplify the treatment of the boundary
conditions for complex geometries, Equations (1) and (2) are
expressed into a general time-dependent body-fitted curvilinear
coordinate system. The time dependent nature of this
transformation allows all computations to be carried out in a
fixed uniform computational domain even though components
of the physical domain may be in motion. The curvilinear
coordinates are defined as:
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The transformation provides a computational domain that is
better for applying spatial differencing and the boundary
conditions.

2.2.2.Boundary condition at the gas-shell interface
The gas-shell interface is treated as a standard gas-liquid

interface, which can be best described by a free surface
boundary condition satisfying both kinematic and dynamic
boundary conditions. The kinematic condition is that a particle
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on the surface remains on the surface. For a surface of equation

( , ) 0,iF x t  this can be written / 0DF Dt  .

The dynamic condition imposes zero shear stress (we ignore
here stress generated by the air in the bubble) and balance of
normal stresses at the interface. With the same simplifications
used by Batchelor [16] for deriving the dynamic boundary
condition in the Cartesian coordinate system, Hodges et al. [17]
derived a dynamic boundary condition in a curvilinear
coordinate system by requiring the grid to be normal to the
boundary. Following their work we write the dynamic boundary
condition at =0 (gas-shell interface) in non-dimensional form
as:
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where (U,V,W) are contravariant velocity components in the

curvilinear coordinates and gsC is the curvature of gas-shell

interface.
2

,W * * /e gs s gsu L  , (9)

is the Weber number with gs being the surface tension at the

gas-shell interface.
2( ) / *gv g v sp p p p u   . (10)

To determine the gas pressure we assume that the amount of
gas inside the bubble remains constant and that the gas satisfies
the polytropic relation:

constantk
gp V , (11)

where V is the gas volume.

2.2.3.Boundary condition at the shell-liquid interface
The shell-liquid interface is a liquid-liquid interface at

which the boundary conditions are continuity of the shear
stresses, balance of the normal stresses, and continuity of the
velocity:
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where l is the dynamic viscosity of the surrounding liquid, l

is its density, slC is the curvature of the shell-liquid interface.

2
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is the Weber number, where sl is the surface tension at the

shell-liquid interface .

,l  , ,l  are the normal derivatives of the tangential

velocity components in the  and  directions respectively at the

liquid side of the interface. ,l  is the normal derivative of the

normal velocity component, and Pl is the pressure on the liquid
side of the shell-liquid. n is the local unit normal vector to the
boundary and us is the viscous liquid velocity at the boundary
which will be provided by the solution of the outer domain,

In this study we further simplified the boundary condition
and consider cases where viscosity of the shell material used for
therapeutic ultrasound contrast agents is much higher than the
viscosity of the surrounding liquid. This is usually the case in
order to stabilize the contrast agent during transit. For example,
ImaRx Therapeutics (Tucson, AZ) has produced two types of
prototype agents with a triacetin shell and a soybean oil shell.
The viscosities of tracetin and soybean oil are 28 centipoise and
110 centipoise respectively which are much larger (at least one
order larger) than the viscosity of blood (2.7 centipoise at 37oC).
If the viscosity ratio l/s are very small, Equations (12)-(14)
can be reduced to:
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2.2.4.Numerical Approach
The DF-UNCLE

© code is based on the artificial-
compressibility method [18] in which a time derivative of the
pressure is added to the continuity equation as

1
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where  is an artificial compressibility factor. As a

consequence, the hyperbolic system of equations formed can be
solved using a time marching scheme.

The solution procedure is to march in pseudo-time until
reaching a steady-state solution. To obtain a time-dependent
solution, a Newton iterative procedure is performed at each
physical time step in order to satisfy the continuity equations.
The numerical scheme in DF-UNCLE

© uses a finite volume
formulation. The first-order Euler implicit difference formula is
applied to the time derivatives. The spatial differencing of the
convective terms uses the flux-difference splitting scheme based
on Roe’s method [19] and van Leer’s MUSCL method [20] for
obtaining the first-order and the third-order fluxes respectively.
A second-order central differencing is used for the viscous terms.
The flux Jacobians required in an implicit scheme are obtained
numerically. The resulting system of algebraic equations is
solved using the Discretized Newton Relaxation method [21] in
which symmetric block Gauss-Seidel sub-iterations are
performed before the solution is updated at each Newton
interaction.
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2.3. Model for Surrounding Liquid: Outer Domain
2.3.1.Governing Equations

The outer domain liquid flow due to the contrast agent’s
motion is assumed to be irrotational and incompressible. These
are conventional assumptions for bubble dynamics [22,23] The
assumption of irrotational flow for the outer domain allows the
definition of a velocity potential,  , such that

 u , (21)

where u is the velocity vector. The assumption that the liquid is
incompressible leads to Laplace's equation for the potential:

2 0.  (22)

A boundary integral method is used to solve Equation (16).
This method is based on an integral solution of the Laplace
equation using Green’s theorem, which can be written in the
following form:
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In this expression  is the domain of integration having
elementary volume d. The boundary surface of  is S which
includes the surface of the contrast agent and the nearby
boundaries with elementary surface element dS and local normal
unit vector n.  is harmonic in the fluid domain , and G is
Green's function. If G is selected to be harmonic everywhere
but at some discrete points, Equation (17) simplifies
considerably. For instance, if
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where x is a fixed point in  and y is a point on the boundary

surface S, Equation (21) reduces to Green’s formula with ap
being the solid angle at x enclosing the domain :
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a = 4, if x is a point in the fluid,

a = 2, if x is a point on a smooth surface, and

a < 4, if x is a point at a sharp corner of the discretized
surface.
This equation states that if the velocity potential  and

its normal derivatives are known on the boundary surface S of a
domain , where  satisfies the Laplace equation, then  can be
determined anywhere in  by integration over the boundary
surface. Using this expression the boundary integral method
reduces by one the dimension of the problem of solving the
Laplace equation.

2.3.2.Boundary Conditions
At any given time step, if the velocity potential  on the

boundary surface S is known, then the interface normal velocity

/n can be obtained by Equation(25). For a point x on the
boundary S, the Bernoulli equation gives
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where P(t) is the acoustic pressure imposed and the pressure on
the interface Pl is obtained by Equation (19). Equation (26)

provides /t, and the rate of change in potential at a given
point followed in its motion can be obtained by
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where us is the shell velocity at the shell-liquid interface as
defined in Equation (15). Since no liquid is allowed to cross the
shell-liquid interface, the normal velocity component of the shell
velocity at the interface must be equal to the normal velocity
component of the liquid, i.e.

S
n


 


u n . (28)

2.3.3.Numerical Approach
To solve Equation (25) numerically with the boundary

element method, it is necessary to discretize the surfaces of all
objects. As a result of this discretization, every surface integral
evaluated at any field point x becomes a summation over all
panels of the influence of singularity distributions over each
individual panel. This enables us to write Green's identity in the
form
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where P is the number of surface elements on the boundary. To
evaluate the integrals given in Equation (29), it is necessary to
assume a relation between  and /n at a surface node with
the values of these quantities at the discretized nodes. Here, we
assume that these quantities vary linearly over a panel and can
be described by the surrounding nodes. By applying a linear
interpolation for each panel Sk, each elementary integral can be
written as a linear combination of  or /n evaluated at the
surrounding nodes. The integration expressions are complex,
and details can be found in our previous studies [24].With the
integration over each panel performed, the discretized Equation
(29) can be expressed as:
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where k
i and k

in  are the potential and its normal

derivative at node i of panel k, and k
iA and k

iB are influence

coefficients obtained from elementary integration and N is the
total node number.

Following a “collection” approach in which the
contributions due to the same node are collected from the
various contiguous elementary surfaces and summed up,
Equation (30) can be rewritten as:

1

, 1, ,
N

j i i i
ii

a B A j N
n


 



  
      
 (31)

where A and B are the altered influence coefficients due to
summation of the same node. It is noted that the “collection”
approach transfers the panel contribution in Equation (30) to the
node contribution in Equation (31). Equation (31) can be
expressed in a matrix form as:
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where I is an N N identity matrix, and A and B are
N N influence coefficient matrices. With  known on all

boundary nodes, Equation (32) is a linear system of N equations

and can be readily solved for N unknowns of n  , using

classical methods such as LU decomposition and Gauss
elimination.

Figure 2. Flow chart of the numerical procedure for coupling
the Navier-Stokes solver, DF_UNCLE

, and the potential flow
solver, 3DYNAFS.

2.4. Coupling between Inner and Outer Domain
The boundary conditions given by Equations (15), (19) and

(26) are key for coupling the Navier-Stokes solver and the
potential flow solver. The procedure is illustrated in Figure 2
and is summarized as follows:
a. A volume grid is generated within each inner domain to

discretize the shells according to the shape of the gas-shell
interfaces and of the shell-liquid interfaces. .

b. The Navier-Stokes equations are solved for the velocity and
pressure fields in the inner domains using the boundary
conditions specified at the gas-shell interface with the gas

pressure, gp , and the shell-liquid interface with the normal

velocity /S n   u n provided by the potential solver.

The gas-shell interface and the shell-liquid interface are
updated according to the kinematic boundary condition and
the boundary pressure Pl is calculated.

c. The discretized Green’s equation is solved for the normal

velocity, /n on the boundary surfaces knowing the
velocity potential  . Using the boundary conditions

specified at the shell-liquid interface with the boundary
pressure Pl, provided by the Navier-Stokes solver, the rate

of change of the potential /D Dt is obtained and the

velocity potential  at the next time step is updated.

2.5. Volume and Surface Grids
To solve the Navier-Stokes equations using the finite

volume scheme, we discretize each inner domain describing the
viscous thick shell using an O-type grid as shown in Figure 3.
For most computations we select a grid number in the azimuthal
direction of 41, 21 in the altitude, and 25 in the radial direction.
The grid is evenly distributed in both azimuth and altitude
directions while it is clustered near the air/shell and shell/liquid
interface in the radial direction. Concerning the outer domain we
use two types of grids Shown in Figure 4: an O-type structured
grid and a triangular panel unstructured grid to represent the
bubble outer surface. In the O-type structured grid, the grid
points are the same as those in the outer surface of the grid used
in DF_UNCLE

© so that the exchange of variables between
DF_UNCLE

© and 3DYNAFS© is straightforward. However, since
the singular points on the two poles result in low numerical
precision in 3DYNAFS©, we used the unstructured grid to solve
the BEM problem. For the results shown below, we used a total
number of 402 nodes and of 800 panels for the unstructured
surface grids. Since the grid points are not the same as those
used in the viscous code, the communication of the variables
between DF_UNCLE

© and 3DYNAFS© requires interpolation
between the two grid systems and additional CPU time.
However, using this unstructured grid is stable and avoids
having singular unstable points as in the O-type grid.

X

Figure 3. O-type grid used in DF_UNCLE
© for the liquid shell

(inner domain).

X Y

Z

X

Z

Figure 4. The two types of grids used in the outer domain for
the 3DYNAFS© computations: (a) O-type structured grid, (b)

Unstructured triangular-panels grid.

3. RESULTS AND DISCUSSION
3.1. Validation of Spherical Model

We have derived and implemented a 1D spherical thick
shell model similar to that derived by Allen et al. [14] The
derivation and resulting equations can be found in[25]. We
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validated this model against experimental results found in [15],
and then used it to validate the 3D shell model at different
insonation conditions. Figure 5 shows a two-dimensional optical
streak image of a triacetin-shelled bubble insonified by an
acoustic pulse with a transmitted center frequency of 2.5MHz
and peak negative pressure of 1.6MPa shown in the top of the
figure from a hydrophone recording of the transmitted signal.
The initial bubble radius was 1.7 m. In Figure 5(a) our
numerical solution (red curve) is laid over the optical image. A
quantitative comparison of the time history of the radius of the
contrast agent is shown in Figure 5(b). It can be seen that the 1-
D spherical model reasonably captures the contrast agent
oscillations amplitude and period except, as expected when the
breakup occurs.

frequency*time

R
/R

0

0 2 4 6 8 10

1

2

3

4

5

6

7

8
Experiment
1D spherical solution

Figure 5. Comparison of the spherical thick shell model
results with a steak image of a triacetin-shelled bubble with
initial radius of 1.7 m under insonation at 2.5MHz and

1.6MPa, (a) overlaid numerical solution and image of bubble
outer shape, and hydrophone recording of transmitted pulse,
(b) comparison of time history of contrast agent outer radius.

3.2. Validation of 3-D Model using Spherical Model
3.2.1.Small Amplitude Driving Pressure

To validate our 3-D numerical model, we first simulate the
motion of a triacetin-shelled contrast agent driven by an acoustic
pressure in an infinite medium. In this case, the bubble is
expected to remain spherical during the oscillations and the
results should be the same as those predicted using the 1-D
spherical model. Figure 6 shows a comparison between the 3-D
and spherical models. This is illustrated using the inner and
outer radial motions of the contrast agent driven by a sinusoidal

acoustic wave with aP = 0.1Mpa and f = 3MHz at an ambient

pressure of 0.1Mpa. The initial inner radius of the contrast agent

is 10 1.2R  m and the outer radius is 20 1.7R  m. The radii

in the figure are normalized by 10R and the time is normalized

by 10 aR P . The comparison shows that the 3-D numerical

results agree very well with the spherical solution with very
small differences resulting from the non perfect discretization of
the sphere.
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Figure 6. A triacetin-shelled bubble driven by a sinusoidal
acoustic wave with Pa=0.1Mpa Patm=0.1Mpa and f=3MHz.

Comparison between 3D and spherical solutions.
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Figure 7. A triacetin-shelled bubble driven by a sinusoidal
pressure with Pa =0.5Mpa, Patm =0.1Mpa, and f=2.5MHz.

Comparison between 3D and spherical solutions.
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Figure 8. A triacetin-shelled bubble driven by Pa =1Mpa, Patm

=0.1Mpa, and f=2.5MHz. Comparison between 3D and
spherical solutions.
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3.2.2. Large Amplitude Driving Pressure
Figure 7 and Figure 8 show the radial motion of the contrast

agent bubble driven at f = 2.5MHz with aP = 0.5MPa and 1MPa

respectively. Here the pressure amplitudes are much larger than
in the previous case and bubble oscillations are more intense.
During the first period, there are large differences between the
3-D results and the spherical model results. The 3-D code
appears too sensible to transients and may require an improved
time stepping scheme further at the start of the dynamics.
However, the results become very close after the first bubble
oscillation period.

Figure 9 and Figure 10 show a comparison of the minimum
shell thickness between the 3-D and 1-D results at three different
frequencies for the first and second bubble periods, respectively.
The lines show the 1-D spherical model predictions while the
symbols show the 3-D numerical simulations. The colors
represent different frequencies. The relative differences of the
numerical results of the first and second maxima with different
pressure amplitudes are shown in Figure 11. With small
amplitudes, the 3D numerical solutions agree with the 1-D
spherical solution while for large amplitudes, the numerical
solutions agree with the 1-D spherical solution only after the
second bubble period.
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Figure 9. Comparison of the minimum shell thickness during
the first bubble period.
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Figure 10.Comparison of the minimum shell thickness during
the second bubble period.

Figure 11. Relative difference between the 3D code
simulations and the spherical solution.

3.3. Contrast Agent Dynamics near Rigid Wall
When a contrast agent bubble oscillates near a wall, its

dynamics deviate from spherical oscillations. To simulate
contrast agent dynamics near a wall, a rigid boundary is added in
the outer computational domain. There are two ways of doing
this: one way is to actually discretize the solid wall with a
boundary element mesh in addition to the contrast agent as
shown in Figure 12. The other way is to indirectly account for
the wall by adding an image of the contrast agent relative to the
wall, as show in Figure 13. For the simulations presently below,
we have used the image method.

Figure 12. Geometrical setup of the contrast agent dynamics
near a discretized wall (a) side view (b) top view.
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Figure 13. Geometrical setup of the contrast agent dynamics
near a wall using an image bubble.

3.3.1.Small Amplitude Driving Pressure
With a small amplitude driving pressure, the non-spherical

deformations are small, however, the motion of the volume
center of the contrast agent (based on the shell/liquid interface)
is not negligible. Figure 14 shows the x-coordinates of the
shelled bubble center when the bubble is driven at

atmP =0.1Mpa, aP =0.1Mpa, and f=3MHz in presence or absence

of a rigid wall. The contrast agent initial inner and outer radii

are 10 1.2R  m and 20 1.7R  m respectively. The contrast

agent is initially located at X=0 and the wall is located at
X =1.715 m. The figure shows that the shelled-bubble center
moves away from wall during expansion then gets closer to the
wall during compression. For the spherical bubble the center of
the contrast agent obviously does not move.
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Figure 14. The location of the center of gravity of the contrast
agent driven near a wall by a sinusoidal acoustic wave with

Pa=Patm=0.1Mpa and f=3MHz.

3.3.2.Large Amplitude Driving Pressure
The non-spherical deformations due to the presence of the

wall become much more significant and interesting as the
driving pressure amplitude becomes higher. It is known from
previous studies [5-7] that non-spherical dynamics can result in
the formation of re-entrant jets directed towards rigid walls or
moving away from free surfaces [23]. To study the effect of a
rigid wall on contrast agent dynamics, we present below 3-D
numerical simulations for an acoustically excited contrast agent
oscillating near a rigid wall at three different initial standoffs,

X = 2.6, 3.6 and 4.6 m. The contrast agent initial inner radius is

10 1.2R  m and its outer radius is 20 1.7R  m.

Figure 15 through Figure 17 show for the three standoffs
the contrast agent shape time variations during the first
oscillation period. Also shown are the pressure contours in the
viscous liquid of the shell. All shapes are shown in a cut plane
perpendicular to the wall and going though the bubble center.
The shelled bubble was initially in a uniform pressure field with

atmP  0.1Mpa, and was subjected to a sinusoidal acoustic wave

with aP = 1Mpa and f = 2.5MHz. As expected, the smallest

standoff case has the most significant non-spherical
deformations. The presence of the wall imparts a non-spherical
pressure distribution on the shell which deforms it non-
spherically. More importantly the dynamics lead to a non-
uniform shell liquid thickness distribution during the collapse.
During the bubble growth phase, the shell retains a more or less
uniform thickness, then becomes thicker and thicker on the side
opposed to the wall, where a jet usually takes place.
Concurrently, the shell becomes thinner and thinner at the side
nearest to the wall potentially leading to starvation of the shell
liquid and potential breakup. Using a linear stability analysis
[25], we have also confirmed that the most unstable mode due to
a 3-D perturbation is when the bubble form a jet at one end and
breaks up on the other end.

Figure 15. Contrast agent shape variations and pressure
contours near a rigid wall when subjected to a sinusoidal
acoustic wave with Pa=1Mpa, Patm=0.1Mpa and f=2.5MHz.

Initial standoff of 2.6 m. (a)bubble growth and

(b) bubble collapse with R10=1.2m , R20=1.7m.

(a)

(b)
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Figure 16. Contrast agent shape variations and pressure
contours near a rigid wall when subjected to a sinusoidal
acoustic wave with Pa =1Mpa, Patm 0.1Mpa and f=2.5MHz.

Initial standoff of 3.6 m. (a) bubble growth and
(b) bubble collapse with R10=1.2m , R20=1.7m.

Figure 17. Contrast agent shape variations and pressure
contours near a rigid wall as seen in the inner domain when
subjected to a sinusoidal acoustic wave with Pa =1Mpa, Patm

0.1Mpa and f=2.5MHz. Initial standoff of 4.6 m. (a) bubble
growth and (b) bubble collapse with R10=1.2m , R20=1.7m.

Figure 18 through Figure 20 show the contrast agent shape
variations and normal velocity contours at three time steps as
seen in the outer domain in which two contrast agents are
present due to the plane of symmetry used. In the figures, the
second set is at the time the contrast agent grew to its maximum
size while the third set is the last time step before the
simulations were terminated for the X=2.6 and 3.6 m cases.
This is the last time step before the rebound for the X=4.6 m
case.

Figure 18. Contrast agent shape variations and normal
velocity 3D contours at three times as seen in the outer domain.

Excitation sinusoidal acoustic wave with Pa =1Mpa,
Patm =0.1Mpa and f=2.5MHz at an initial standoff of 2.6 m

with R10=1.2m , R20=1.7m.

Figure 19. Contrast agent shape variations and normal
velocity contours at three time steps as seen in the outer
domain. Excitation by a sinusoidal acoustic wave with

Pa =1Mpa, Patm= 0.1Mpa and f=2.5MHz at an initial standoff
of 3.6 m with R10=1.2m , R20=1.7m.

Figure 20. Contrast agent shape variations and normal
velocity contours at three time steps as seen in the outer
domain. Excitation by a sinusoidal acoustic wave with

Pa =1Mpa, Patm =0.1Mpa and f=2.5MHz at an initial standoff
of 4.6 m with R10=1.2m , R20=1.7m.

T=1.0x10-5 ms T=2.6x10-4 ms T=4.0x10-4 ms

T=1.0x10-5

ms
T=2.6x10-4

ms
T=3.7x10-4

ms

T=1.0x10-5 ms T=2.6x10-4 ms T=4.0x10-4 ms

(a)

(b)

(a)

(b)



10

Figure 21 shows a comparison of the time history of the
contrast agent equivalent radius for the three standoff cases. It is
seen that the presence of the wall only has a slight influence on
the maximum growth size of the contrast agent.

The simulations for the X = 2.6 and 3.6 m cases, however,
were terminated due to numerical instability as the shell became
extremely thin and the 3D grid became overly squeezed, while
the simulation for the X = 4.6 m case was able to continue and
the rebound was observed.

Figure 22 shows the solutions with the velocity vectors
plotted on both shell/liquid and shell/gas interfaces at the last
time step before the simulations were terminated for the X = 2.6
and X = 3.6 m cases. Figure 23 shows the solutions at the time
steps before and after the rebound for the X = 4.6 m cases. It is
seen that, at the time the computations stopped for the X = 2.6
and 3.6 m cases, a re-entrant jet with a high normal velocity
was just starting to form at the thick-shell side while the shell
was stretching with a high tangential velocity component at the
thin-shell side. Continuous shell thinning and stretching at the
near-wall side indicate the tendency of the shell to break up. For
the X=4.6 m case, the shell remained thick everywhere and was
not stretched near the wall side. As a result the contrast agent
was able to rebound after reaching it minimum volume.

Figure 21. Contrast agent equivalent radius versus time for
three different standoff cases; (a) inner equivalent radius vs.

time, and (b) outer equivalent radius vs. time.

Figure 22. Contrast agent shape near a wall at the last time
step before the simulations were terminated for (a) X =2.6, and

(b) 3.6 m cases. The velocity vectors are shown plotted on
both the shell/liquid and the shell/gas interface.

Figure 23. Contrast agent shape near a wall at the time steps
before and after rebound for the X =4.6 m case. The velocity

vectors are shown plotted on both the shell/liquid and the
shell/gas interfaces.

3.4. Contrast Agent Dynamics between Two Walls
To demonstrate the capabilities of the developed 3-D

model, we have simulated the dynamics of two contrast agent
bubbles located between two discretized walls separated by a

(a)

(b)

(b)

(a)

(a)

(b)
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distance of 12 m (Figure 24). The shelled bubbles were

subjected to a sinusoidal acoustic wave with atmP  0.1Mpa,

aP =1Mpa and f=2.5MHz. Figure 25 shows the contrast agent

shape variations and pressure contours during the first
oscillation period. It is seen that the presence of the two walls
leads the contrast agent bubbles to oscillate in oval shapes with
the axes switching between horizontal and vertical directions
during growth and collapse. Figure 26 shows the contrast agent
shape variations and normal velocity contours at two time steps.

Figure 24. Numerical setup of the outer computational domain
for two contrast agent bubbles between two walls.

Figure 25. Contrast agent shape variations and pressure
contours for two contrast agents in between two walls

subjected to a sinusoidal acoustic wave with Pa =1Mpa,
Patm =0.1Mpa and f=2.5MHz during (a) growth and

(b) collapse during the first oscillation period.

Figure 26. Contrast agent shape variations and normal
velocity contours for two contrast agent bubbles in between

two walls at two time steps. Excitation by a sinusoidal acoustic
wave with Pa =1Mpa, Patm =0.1Mpa and f=2.5MHz.

4. CONCLUSIONS
In this study we have considered the dynamics of thick

viscous shell contrast agents. We have developed a 3-D thick
viscous shell model where the dynamics of the shell material
was followed using a Navier Stokes solver, while the dynamics
of the overall bubble was described with a boundary element
method. This shell model allowed us to simulate multiple
contrast agent dynamics and their interactions with nearby solid
walls. We have validated this model with experimental results
available in the literature for spherical deformations. Further
validation is needed for non-spherical deformations.

We also exercised this model under different conditions and
have derived the following conclusions:
 The thick viscous shell prevents the contrast agent from

forming a re-entrant jet towards a nearby boundary.
 The shell thickness varies significantly from location to

location during the thick shell dynamics.
 The thick shelled contrast agent may break up due to local

shell thinning and stretching.
Our simulations seem to indicate that in the presence of a wall of
another interaction contrast agent, the shell thinning and thus
potential for breakup occurs on the shell side nearest to the wall
or to the other agent.
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