Simulation of the Pressure Field

Ph. F. Genoux'

Direction des Recherches Etudes
@t Techniques,
Paris, Frange

Due to a Submerged Oscillating
Jet Impacting on a Solid Wall

This paper presenis some results obtained with the simulation of a submerged
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oscillating jet impacting on a solid wall. The oscillating jet which organizes into
large vortical structures is simulated by the emission of vortex rings at a constant
Jrequency. Outside of the cores of the rings the fluid is assumed to be inviscid and
irrotational. The positions of the tori are obfaired by combining for each torus its

self-induced velocity with the velocity induced by all other rings and ring-images in
the wall. The tangential velocities and the pressures in the fluid at the wall are then
computed. The high shearing and suction forces found at the wall may explain the
enhanced erosivity and cleaning action of osciflating jets.

Introduction

Experimental observations of air jets show the tendency of
the turbulent eddies in their shear layer to organize in large
structures. Excitation of a jet with periodic acoustic signals
produced upstream of the nozzle by transducers or loud
speakers shows a remarkable change of the jet structure into
discrete ring wvortices, when the excitation frequency, f,
matches the predominant natural frequencies of the
nonexcited jet [1, 2]. This corresponds to a Strouhal number,
S84, close to 0.3 or one of its first integer multiples. (The
Strouhal number is defined as S; = fd/V, where Vand d are
the velocity and the diameter of the jet.) Based on these
observations, several attempts have been carried out to model
a jet with a discrete distribution of vortex rings. Axially
symmetric vortex rings with a viscous core have been in-
vestigated and the numerical schemes were able to satisfac-
torly reproduce experimental measurements or observations
[3-5]. For instance, the fluctuating pressure field in the jet
vicinity was simulated by Fung et al. [3]. Acton [4] simulated
the upstream portion of the jet with a double row of ring
vortices which were allowed to interact and move freely
downstream of the nozzle exit. The roll up of the vortex sheet
into large axisymmetric structures was numerically
demonstrated. Artificial excitation of the jet by periodically
modulating the strength of the emitted vortices exhibited the
same features as obsrved experimentally, namely the existence
of an optimal Strouhal number.

Under an effort for the Department of Energy, in order to
improve the erosive and cleaning power of submerged water
jets in deep drilling technology, the same ideas were applied to
cavitating jets [6]. Here, the cavitation appears in the shear
layer in randomly oriented vortex filaments in which gas and
vapour cavities grow. The studies conducted at
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Tracor Hydronautics have shown very clearly that a
cavitating jet can be organized in well defined bubble ring
vortices when excited (Fig. 1). This has augmented the erosive
and cleaning power of these jets. Both external excitation with
a transducer and self induced oscillations have been con-
sidered [6]. In previous work we modelled the growth and
collapse of a toroidal bubble in an infinite medium. A
dynamic equation was derived and the importance of the
various parameters investigated. The characteristic time of the
collapse of the toroidai cavity, and its self induced translation
velocity were obtained [7, 8].

This paper is one of the first steps towards the un-
derstanding of the enhancement of the cleaning effects
associated with the excited jets and is mostly concerned with
the interaction of an organized jet with a solid wall. Taking
advantage of the numerical results obtained in previous
studies and of experimental observations one can simplify the
problem by neglecting the fine structure of the jet’s shear
layer and assuming that the major features of the flow field
are associated with the large structures. Thus, the excited jet is
modelled with large vortex rings emitted from the nozzle
orifice at constant time intervals which correspond to the

Fig. 1 Cavitating vortex rings in the shear layer of an excited sub-
merged jet. o = 0.94, M = 0.082, and F = 14kHz
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frequency of the pulsing jet. Each of these vortex rings has in
its center a gas and vapor filled toroidal cavity and is allowed
to move and change shape under the influence of its self in-
duced velocity as well as the velocities induced by the other
ring vortices present in the field. The presence of the wall is
accounted for by applying the method of images since no
viscous effects are considered. Knowing the location and
characteristics of all rings at any time allows the computation
of the generated pressure field, We present here the model
used and some results on the interactions of the large
structures between each other and with the wall, as well as the
generated pressures on several arbitrary locations on the solid
wall.

Formulation of the Problem

Let us consider a vortex ring of radius Ay and of cir-
culation, T', constant in time. The core of the ring is gas and
vapor filled and has a circular section of radius Ry. The
surface tension coefficient at the bubble liquid interface is «,
and the initial partial gas and vapor pressures inside the
bubble are P,, and P,. OQuiside the gaseous core we can
assume that the liquid is inviscid and incompressible and that
the flow is irrotational. Therefore the liquid flow is potential.
In order to simplify the analytical and numerical approach we
consider the case where the radius of the gaseous section is
small compared to the torus radius and introduce the small
parameter,

e=Ry/A < <1 (1)

We can then consider an asymptotic approach to the problem,
and use the method of matched asymptotic expansions.
Concerning the investigation of the bubble ring behavior two
regions of the fluid field are introduced. In the “‘inner region”’
of characteristics length R, the problem is concerned with the
torus core, and is two-dimensional, and the bubble appears as
cylindrical. In the “‘outer region” of characteristic length
Ay, the cavity cannot be distinguished and the problem
reduces to the well-known potential problem of a circular
vortex line. For this “‘outer problem’’ the expression of the
stream function y is given by Lamb [9].

where E and X are complete elliptic integrals of the first and
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second kind respectively and where the geometric distances 7,
and r, are defined in Fig. 2. Similarly, the velocity potential
can be written as

5 = —I‘S PM-e, s
T o4rx Js IPMI?
PAO m—kl —Zl
=sgn(Z—2) — Soe 2l g (kx) S (KA Yk 3)

where J; and J, are the Bessel functions of order 0 and 1, and
Pis a point of any surface S limited by the circle of radius A,.

In order to determine the self-induced translation velocity
of the vortex ring one has to solve both the inner and outer
problems using a matching condition at the boundary of the
two regions. For instance, when no bubble growth occurs the
behavior of the outer solution in the vicinity of the bubbie
wall can be obtained by expanding ¢ in powers of ¢ and Log
&, [8], and can be written:

lim ¢ (e, F,6}
e—0

r € r Fcos 8
N PR (_) 7 cosd—

qu[ el.n 8 3 cosf—e

where the nondimensional distance, 7, from the bubbie center
to the field point M is defined by:

F=T/R0:r/6r40 (5)
Expression (4) is used for writing the boundary conditions at

Ln F+a(e)], )

Nomenclature
] . ¥ = stream function
o A = vortexringradius ¢ = velocity potential
d = jet diameter Ay = lnltlalvortexrlt{lg radius # = field angle
€, = unit vector along z-axis § = vortex ring surface _ :
E = complete ellipFical integrat P S_trouhal number = fd/V ‘2 _ i?ﬁfé};ﬁ%g::::or
of the second kind [ = Flme ) p = density of the liquid
S = frequency Vo= ]et'velocflty . & = rario between the core size
Jo = Bessel funct1_on of order ¢ Z = axial distance of the ring and the ring radius
J; = Bessel functu_m pf or:_ierl cerlltcr ' ] 0, = circulation parameter
K = complete elliptical integral z = axial distance of the field
of the first kind point __r ( r )2
n = normal unit vector W, ' = inverse of the Weber P, \27R,
P,, = initial partial gas pressure number = v/R P, .
inside the ring X = radial distance from the ring  Superscripts
P, = vapor pressure inside the axis ext = outer problem
ring ¢ = asymptotic parameter, int = inner problem
P, = pressure at infinity defined as the ratio of the ~ = tilde, normalization in
R = vortex ring section radius ring section radius to the reference to the outer
Ry = initial ring section radius ring radius problem
ri» = geometric distance between v = surface tension — = bar, normalization in
the field point and the ring ' = circulation of the vortex reference to the inner
center ring problem
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infinity for the inner problem, and contains most of the in-
formation needed to compute the bubble translation velocity.
Besides the vortical motion which is given by the first order
term, a uniform velocity appears to the following order, eLn
(¢/8). More complicated terms appear at the higher orders. If
the bubble ring is not isolated the second term is modified by
an additional constant multiplying r cos 6.

In the *“inner problem’’, one has to solve the Laplace
equation along with kinematic and dynamic boundary
conditions on the bubble wall:

A" =0, (6)
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r=

Do =Py =P —2C, ®
where n is the normal vector to the bubble wall, € the bubble
curvature, and ¥, the translation velocity of the ring which is
chosen as the translation velocity of the origin of coordinates.
Equations (6) to (8) are expanded in powers of ¢ and Loge,
and ¢™ and R (8, #) decomposed in spherical harmonics. One
finds, [8], after using the boundary condition at infinity
derived from (4) that the circular shape of the bubble section
is a stable solution, up to the order ¢, and that the self-induced
velocity of the ring is

r ¢ g§A 1 w,!
V =_{—_*[Ln—-—~—+ ]+Oe}, 9
self 47‘_R0 A € D ﬂs ( ) ( )
where W,~! is the inverse of the Weber number and {; the
circulation number measuring respectively the relative im-
portance of the surface tension and the pressure drop due to
circulation relative to the ambient pressure. These are wriiten
as:

W, =y/RyPo, (10)

Q,=p(T/27R,)*/P,. (1)

A similar expression has been obtained for vortex rings with a

viscous liquid core. In that case e is replaced by &, the ratio

between the core size and the torus radivs, A, the surface

tension term is null and the constant 1/2 is replaced by 1/4
(10]

T 8 1 ]
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Numerical Procedure and Remarks

In order to simulate the behavior of the jet and its in-
teraction with the wall we used the following procedure. At ¢
= (), a ring is emitted from the location Z = 0 and is allowed
to move under the influence of its self-induced velocity. The
velocity due to the ring image is to be added when a solid wall
is present. Subsequently at the discrete instants £, = n/f, (fis
the jet oscillation frequency and » an integer number) an

Hotar A dol numberad n I the
Iozation of the nth  emitted ring
All numbered rlngs correspand to
the Jame cbsarvation time
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additional ring is emitted and is allowed to interact with the
rings already in field and their images. At every time step the
locations of all the rings are computed, as well as their
translation velocities which in turn determine their subsequent
positions. The self-induced velocity of any ring is computed
using equation (9), while its translation velocity due to the
other rings and the ring images is derived using equations (4)
or (5) since the analysis show that the translation velocity of
the bubble ring due to an imposed incoming flow is equal to
the fluid velocity at its location.

As expected the behavior of the emitted rings is at first
unsteady and does not represent the jet behavior. However,
after certain computation time has eclapsed the system
becomes steady and a periodic behavior of the various emitted
ring is exhibited. Once the location of all the rings are
determined, the pressure at any location can be obtained using

the Bernoulli equation:
a¢ext 1
M)—p.=— [ + —
p{M)—p * % >

| 7 ¢t I'l] (13)
where ¢*' is given using (3).

Let us note that in the procedure and the analytical ex-
pressions presented above we have neglected both the in-
fluence of the nozzle and the bubble growth. The first effect is
too complicated to account for with accuracy at the present
time and will constitute a future subject of investigation. The
bubble growth effect which we have studied earlier [7] can be
neglected if the variation of the local pressure around the
bubble ring and the influence on the vortex ring motion are
small compared to ¢, the highest order term considered in the
above expressions. This is true as long as the distance between
two tori is of higher order of magnitude than ¢, (i.e., as long
as the distance is greater than the section radius). This
assumption, as we will see below is valid in all the cases
studied and fails only when the vortex ring becomes very close
to the wall. In fact, in that case not all assumptions are valid
and viscous effects on the wall must be considered.

Results and Discussion

In all results presented below, distances are normalized with
the nozzle radius, Ay = d/2, and velocities with the self-
induced velocity of an isolated ring, Vy,, from (9). Thus the
time scale is Ay/ V. For comparison purposes, Fig. 3
shows the behavior of the simulated jet in absence of a solid
wall. In this case a steady periodic solution appears after
about seventeen time steps. Then the multiple rings exhibit
similar behavior to two equal rings, namely successive
threading and overpassing of one ring through the other. Here
all rings emitted at an odd number normalized time follow the
same path while all even numbered ones follow a different
path. At a given subsequent time the rings are located as those
numbered in the figure. The arrowed lines in the figure join
two successive rings and show that the closest to each other
these rings get is at the moment they pass each other and that
even then they stay at a distance of order unity. Figures 4 and
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Fig. 3 Trajectorles of ring vortices emitted at constant frequency, ¢ =

0.1, W, = 200,% = 20,{ = 1

Journal of Fluids Engineering

DECEMBER 1984, Vol. 106 / 483



WALL
NN 5

prals]

JET
Fig. 4 Trajectories of ring vortices emitted at constant frequency (S4
=2f=1td/Vselfyg = 2

EVEN AND HALF OF ODD NUMBER
VORTICES TRAJECTORY

F2 310

€ =0
w_= 200
s
ns =70
1 - f =20
. 1 1 ! 1 L I
1 F 3 4 5 B T
7 ” %0
%
|
7 { e %

Fig. 5 Trajectories of ring vortices emitted at constant frequency (S
=2f=fd/Vselly = 4)
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Fig. 6 Tangential velocities induced at different locations, X, on the
impacted wall versus time

5 show the same type of trajectories represented in-presence
of a solid wall and for two reduced frequencies, f = 1 and 2
(or S, = f Vigp/d = 0.5 and 1). In both cases the standoff
distance, Z = Z/A,, is equal to 5. The importance of the
Strouhal number on the jet behavior is very clear in this
example. Obviously the optimum location of the wall for
maximum erosion and cleaning power is not the same for both
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Fig. 7 Tangential velocities induced at different locations, X, on the
impacted wall versus time
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Fig. 8 Pressures induced at different locations, X, on the impacted
wall, versus time
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Fig. 8 Pressures induced at different locations, X, on the impacted
wall, versus time

cases, This optimum is for either maximum pressure fluc-
tuations or maximum tangential velocity (shear) at the wall.
In Fig. 4, two distincts trajectories for odd and even number
rings is seen as in the free jet case. This is not the case for S,
~ 1, Fig. 5, where all even number rings and one out of two
odd number rings follow one trajectory while the other half of
the odd number rings follow another. In both cases the steady
solution was attained much faster than for the free jet, after
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about seven time steps. We can notice also that in both cases
two successive rings are always much further apart than e.
However their distance to the wall becomes of this order at a
radial distance to the jet center, X, of about 2.5.

Figures 6 and 7 show the tangential velocities induced on
five different locations on the solid wall versus time. The
spikes correspond to the passage of a vortex ring. It is in-
teresting to notice that both the amplitude and the frequencics
of the locally sensed velocity spikes are dependent on the point
of observation. The same observations can be made con-
cerning the generated pressures represented in Figs. 8 and 9.
The occurrence of the pressure and velocity spikes for both
frequencies are very much correlated as well as their am-
plitudes. Both indicate that the predominant term is the
steady term |V ¢l? and that the major factor with our
assumptions appears to be the distance at a given time bet-
ween the ring and the wall. This explains why the highest
negative pressure peaks are at an optimum (in the analyzed
range) value of X. Both, the high intensification of the
tangential velocities and of the suction pressures on the wall
due to the passage of organized structures indicate a
significant enhancement of the cleaning capability of water
jets through excitation. This is possible through an increased
shearing action of the jet on the solid chips on the wall as well
as increased lifting forces. These first results of the developed
program are being presently refined through accounting for
the bubble volume change near the wall and are being ex-
tended to obtain relationships between Strouhal numbers,
optimum standoff distances and maximum pressure drop on
the wall. The same numerical program can be used for
noncavitating vortex rings by replacing equation (9) by (12).
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