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ABSTRACT  
Observations show that a large number of visible 

fine bubbles are present downstream of a cavitating lifting 
surface even in the absence of visible bubbles upstream. 
These bubbles propagate far downstream and can act as 
tracers of the body motion. To understand these 
observations, we consider numerically the flow field about 
a lifting surface accounting for bubble nuclei present in the 
liquid as well as nucleation from rigid boundaries. An 
Eulerian-Lagrangian model is used to obtain resolved 
descriptions of both the unsteady viscous flow field about 
the foil and the dynamics of a large number of bubble 
nuclei. Gas diffusion is included in the dynamics and is 
seen to play an important role on the resulting bubble 
nuclei size downstream.  Bubble explosive growth and 
collapse is seen to be an essential ‘catalyst’ to enable 
significant gas diffusion and the bubble size becomes 
larger and visible downstream of the lifting surface due to 
a net influx into the bubble of gas originally dissolved in 
the liquid. Influx and outflux of vapor, which occur at a 
much faster rate, do not modify the final bubble size 
downstream. In addition to the gas diffusion, the effects of 
boundary nucleation and bubble breakup on the bubble size 
distribution are investigated.  
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1 INTRODUCTION 
The interaction of a propeller and a bubbly medium is of 
relevance to many engineering problems since all waters, 
including supposedly pure waters, contain microscopic 
bubble nuclei and are actually two-phase media. The 
interaction affects both the lifting surface performance and 
the bubbly flow characteristics.  

Even in the absence of visible upstream bubbles, 
photographic evidence has shown that a relatively large 
amount of bubbles is generated downstream of a propeller.  

Cavitation initiates at weak spots of the liquid or nuclei; i.e. 
very small microscopic bubbles, particles with crevices in 
suspension in the liquid, or entrapped gaseous micro- or 
nano-bubbles at the rigid boundaries. The established 
presence of such nuclei in the ocean and in cavitation 
tunnels has been quantified during campaigns through 

various measurement techniques (e.g. Billet, 1985, Wu & 
Chahine, 2010). Bubble size distributions in the ocean 
depend on the geographical location, the environmental 
conditions, the season, the time of the day, and the depth. 
In cavitation tunnels, it depends on the presence in the 
facility of desorbers, seeders, or bubble nuclei controllers, 
and on the duration of operation of these prior to the tests.  

Therefore, it is essential that the analysis of bubble 
distributions and dynamics and their effects on propeller 
behavior starts from the consideration of the presence of an 
initially prescribed bubble size distribution (BSD).  These 
initial bubble nuclei, when subjected to variations in the 
local liquid pressures (e.g. when flowing over a lifting), 
will respond dynamically by changing volume, oscillating, 
and eventually switching from being sub-visual to 
becoming visible due to local explosive growth, collapse, 
splitting, and cumulative gas transfer into the bubbles 
(“rectified” diffusion). 

In this paper, we extend our previous study on the effects 
of a propeller on bubble size distribution (Hsiao & Chahine 
2012) to the unsteady flow over a lifting surface.  We 
consider an Eulerian-Lagrangian approach with the foil 
flow field solved in an Eulerian frame, while the bubbles 
are tracked in a Lagrangian frame. The study includes 
consideration of the diffusion of dissolved non-
condensable gas in the liquid and gas transfer at the gas-
liquid interfaces. It also considers the effects of nucleation 
from the surface of the foil and of bubble breakup during 
strong bubble dynamics, on the downstream bubble size 
distribution.  

2 Numerical Models 

2.1 Eulerian-Lagrangian Approach  
The Eulerian-Lagrangian two-phase flow framework 
employed in this study has been extensively applied and 
documented in our previous studies. These include 
modeling of propeller tip vortex cavitation inception 
(Hsiao & Chahine 2004, Hsiao & Chahine 2008), 
investigations of the effects of a propeller flow on bubble 
size distribution in water (Hsiao & Chahine 2012), bubble 
entrainment in plunging jets (Hsiao et al. 2013) and wave 
propagation in bubbly media and bubble cloud collapse 
studies (Raju et al. 2011; Ma et al. 2015a; Ma et al. 2015b). 
The general procedure includes the following main steps: 



1. The dynamics and motion of the individual bubbles in 
the flow field are controlled by the two-phase medium 
local properties and gradients. 

2. The local properties of the mixture (void fractions and 
local densities) are determined by the instantaneous 
bubble sizes and distribution.   

3. The mixture flow field has an evolving density 
distribution, which is space and time dependent, and 
satisfies mass and momentum conservation. 

The approach allows two-way coupling between the 
continuum-based model and the discrete bubbles model. 

2.2 Eulerian Continuum-Based Mixture Model 
The two-phase flow continuum model uses the Navier-
Stokes equations solver, 3DYNAFS-VIS©, to satisfy the 
continuity and momentum equations: 
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where the subscript m represents the mixture properties. u 
is the mixture velocity and p is the pressure. The mixture 
density, ,m and the mixture viscosity, ,m can be 
expressed as functions of the bubble (gas and vapor) 
volume fraction, , by: 
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where the subscript l represents the liquid and the subscript 
g represents the gas. The medium density and viscosity are 
time- and space-dependent. 

The system of equations is solved by an artificial 
compressibility method (Chorin, 1967) in which a pseudo-
time, , derivative of the pressure multiplied by the 
artificial compressibility factor, β, is added to the 
continuity equation as: 
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As a consequence, a hyperbolic system of equations is 
formed and can be solved using a time marching scheme. 
The solution is iterated in the pseudo-time until 
convergence. To obtain a time-dependent solution, a 
Newton iterative procedure is performed at each physical 
time step in order to satisfy the continuity equation. 

2.3 Lagrangian Discrete Bubble Model 
The Lagrangian discrete bubble model, 3DYNAFS-DSM©, 
uses singularities to model the bubbles. Averaging over the 
bubble surface is applied to the local fluid quantities (Hsiao 
et al., 2003, Chahine, 2004, Choi et al., 2004). This model 
has been shown to produce accurate results when compared 
to full 3D two-way interaction computations (Hsiao and 
Chahine 2003). The source terms, representing bubble 
volume oscillations, use a Surface Averaged Pressure 
(SAP) modified version of the Keller-Herring equation 
(Keller and Kolodner, 1954) to describe the bubble 
dynamics (Ma et al. 2015b), 

23
1 (1 )

2 3 4

1
            1

2
            4 .

s

m m

m m m

v g enc m

R R
RR R

c c

R R d

c c dt

R
p p p

R R



 

 
     

 
 
   

 
 

    
 

u  





 (5) 

where mc  is the local sound speed in the mixture. R is the 
bubble radius at times t,  vp  is the liquid vapor pressure, 
and uenc and penc, are respectively the averages of the liquid 
velocities and pressures over the bubble surface. The slip 
velocity, us = uenc – ub is the difference between uenc and 
the bubble translation velocity, ub. The gas pressure, gp , 
is obtained from a polytropic compression law if no gas 
mass transfer effects are included. When gas diffusion is 
included, the gas pressure is obtained from the solution of 
the gas diffusion problem and energy balance.  

The bubble trajectory is obtained from the following 
bubble motion equation: 
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where CD is the bubble drag coefficient, given by an 
empirical equation, such as from Haberman and Morton 
(1953).  CL is a lift coefficient and  is the vorticity vector.  
The 1st right hand side term is a drag force. The 2nd and 3rd 
terms account for the added mass.  The 4th term accounts 
for the presence of a pressure gradient, while the 5th term 
accounts for gravity and the 6th term is a lift force (Saffman 
1965).  
2.4 Gas Diffusion Model 
Liquids contain non-condensable gas not only in a 
suspended form (bubbles, nuclei) but also in a dissolved 
form with a concentration C.  In the absence of dynamics, 
this results from equilibrium at the gas-liquid interfaces.  In 
the presence of a local concentration gradient, dissolved 
non-condensable gas will diffuse from the high 
concentration region to the low concentration region. The 
transport equation for the time and space dependent 
dissolved non-condensable gas concentration in the liquid 
is given by: 
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where Dg is the molar diffusivity of the gas in the liquid 
(Hsiao & Chahine 2012).  

At a bubble interface, the dissolved gas concentration, Cs, 
is connected to the gas pressure, pg, through Henry’s law: 
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where H is the Henry constant. This condition at the bubble 
interface is very important and actually drives the gas 



diffusion dynamics. The other initial and boundary 
conditions for gas diffusion are:  
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where C is the dissolved gas concentration far away from 
the bubble surface.  

The gas transfer rate, gn ,  at the bubble/liquid interface, is 
directly proportional to the interfacial area and the normal 
concentration gradient at the interface,    
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2.5 Model Closure 
To obtain the gas pressure inside the bubble when gas 
diffusion is taken into account, we consider the 
instantaneous energy and mass balance of the bubble 
content. Both components of the bubble content, vapor and 
gas, are assumed to be ideal gases, which follow the ideal 
gas law:  

    ,g v b g v u bp p V n n R T     (11) 

where Vb is the volume of bubble, ng is the number of moles 
of gas within the bubble, nv is the number of moles of 
vapor, Ru is the universal gas constant and Tb is the absolute 
temperature of the gas and vapor mixture. One 
consequence of this assumption is that the amount of ng and 
nv in the bubble are directly proportional to the ratio of their 
respective partial pressures.  

Due to the relatively short vaporization time compared to 
bubble dynamics and gas diffusion characteristic times, the 
vapor is considered to instantaneously flow in and out of 
the bubble, and pv is assumed equal to the equilibrium 
vapor pressure of the liquid at the bubble wall temperature.  

Considering the thermodynamics of the contents of the 
bubble and applying the first law, the energy balance for 
the control volume bounded by the bubble surface is  

,
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where dU is the change in internal energy, dW is the work 
done on the control volume, and hi  is the specific enthalpy 
of constituent i. The terms can be expanded as: 
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where Vc  is the specific heat at constant volume, cP is the 
specific heat at constant pressure and Tl is the liquid 
temperature. Combining Eq. (11), (12) and (13), and using 
superscripts Tb and Tl  for  cV and cP to indicate whether the 
specific heats are evaluated at corresponding bubble or 
liquid temperature we obtain:  
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Using the fact that cP - cV = Ru, Eq. (14)  becomes:  
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Integration of Eq. (15) provides the instantaneous gas 
pressure to be used in Eq. (5) and Eq. (8). 

2.6 Numerical Solution for Gas Diffusion Equation 
To solve the gas diffusion equation one can use the thin 
boundary layer approach introduced by Plesset and Zwick 
(1952). Although this approach enables a good analytical 
solution for Eq. (8), it requires integration over the whole 
history of the bubble dynamics in order to accurately 
compute the amount of gas inside the bubble:  
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Using this approach requires too much computer memory 
when the considered number of bubbles is large. In this 
case, a direct numerical solution of the diffusion equation 
is more affordable. A finite difference method to solve Eq. 
(8) was instead implemented after transforming, for a 
spherical problem, Eq. (7) using the moving coordinate 
system, ,    
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This coordinate transform simplifies the solution by 
removing the convection term.  

 
Figure 1. Comparison of bubble radius between the thin 
boundary layer approach and the finite difference method. 



For validation, Figure 1 shows a comparison of the time 
history of the bubble radius between the thin-boundary 
layer approach and the finite difference method for a 
bubble excited by a sinusoidal acoustic wave. The 
comparison shows good agreement with only 21 grid 
points for the finite difference method. 

3 RESULTS AND DISCUSSION 

3.1 Unsteady Single Phase Flow 
The present study considers, in the presence of natural 
nuclei, the unsteady flow field over a NACA0015 finite-
span rectangular hydrofoil with a round tip and an aspect 
ratio based on semi-span of 2. The computational 
domain has all far-field boundaries located six chord 
lengths away from the foil and is discretized using an H-H 
type grid with a total of 2.1 million grid points 
(191111101). 12181 grid points are used to 
discretize the foil surface. The first grid above the 
hydrofoil surface is at y+=1 in order to properly describe 
the boundary layer. 

We consider an incoming uniform flow at an angle of 
attack of 4o. Freestream velocities and pressures are 
specified in the far-field side boundaries and in the 
inflow boundary, while a first order extrapolation for all 
variables is used at the outflow boundary. A symmetry 
boundary condition is applied at the foil root section and 
no-slip flow and zero normal pressure gradient 
conditions are imposed on the foil surface. The flow is 
directly simulated without a turbulence model at a 
Reynold number Re=1.5x106 (chord length Cl= 0.15 m 
and liquid velocity U= 10 m/s). In the absence of 
nuclei, unsteady flow separation with vortex shedding is 
observed in the liquid and the computations are 
conducted until limit cycle oscillations are reached. 
Figure 2 shows the non-dimensional pressure contours 
over the blade surface,   2/ ,p p V  over which is 
superposed in grey the 3D iso-surface of the pressure -0.5 
at a selected time after reaching limit cycle oscillations. 

 
Figure 2. Non-dimensional pressure contours and iso-surface 
of pressure at level of -0.5 shown at a selected time after 
reaching limited cycle oscillations (i.e. converged solution but 
oscillating in time). 

3.1 Dispersed Bubbly Flow 
To study the interaction between nuclei and the foil, 90,000 
free field bubble nuclei with radii ranging from 20 to 60 
µm are released from a preset release domain of 
dimensions 0.15×0.32×0.04m3 upstream of the foil. This 
corresponds to an average void fraction of 1×10-6 in the 
release domain. Figure 3 shows the resulting bubble 
distribution in the field before considering gas diffusion 
effects, for a cavitation number,  = 1.0. We can observe 
that the nuclei grow to large sizes in the low-pressure 
regions over the foil, i.e. on the suction side near the 
leading edge and in the tip vortex region.  However, the 
bubbles return to their original size once the field pressure 
returns to a value similar to the upstream pressure. 

 
Figure 3. Bubble distribution over the foil shown at a selected 
time when gas diffusion effects are not taken into account. 

3.3 Gas Diffusion Effects 
Gas diffusion effects on the results are then considered 
when the water is assumed to be supersaturated (i.e. with a 
dissolved gas concentration of 100%, or 0.66 mol/m3 of 
dissolved air). Figure 4 shows the resulting bubble 
distribution. Here, we see a similar behavior to that in the 
absence of gas diffusion during the bubble growth phase. 
However, significant differences are observed in the wake 
region after the bubbles start collapsing and rebounding. 
The bubbles retain much larger sizes and the fine vortices 
in the wake are made visible due to the collected larger 
bubbles. Such a phenomenon is also observed in the 
experimental study by de Graaf et al. (2014).  

 
Figure 4. Bubble size distribution over the finite-span 
hydrofoil shown at a selected time when diffusion is taken into 
consideration. 



To illustrate quantitatively the effects of the foil presence 
and of gas diffusion on the bubble nuclei as they pass over 
the finite-span hydrofoil, we integrate the volume of all 
bubbles in the interrogation volume shown in Figure 5. The 
volume includes the full height in the z direction and has a 
width,y=0.32 m, and a thickness, x=0.01m. 

 
Figure 5. Illustration of the interrogation volume for bubble 
volume and size analysis.  

 
Figure 6. Total bubble volume in the interrogation volume. 
Comparison of results with and without gas diffusion effects. 

Figure 6 shows the variation of the total volume of bubbles 
in the moving strip (x,y) in the stream wise direction, 
and compares the results between the cases where gas 
diffusion effects are considered or ignored. Between 

0.02x m and 0.08x m the bubble volume increases 
dramatically by almost six orders of magnitude due to 
cavitation on the foil suction side. In this region, the effects 
of gas diffusion are not visible. This is followed by the 
bubble collapse and successive rebounds and oscillations 
for 0.08 .x m   In this region, the total bubble volume with 
gas diffusion is seen to be two order of magnitude larger 
than that in the absence of gas diffusion. This effect is less 
visible between 0.14x m and 0.25x m  due to the 
growth of bubbles captured in the tip vortex flow region.  

Figure 7 shows a comparison of the bubble size distribution 
at x=0.4m. It is seen that, while in the absence of gas 
diffusion, the bubbles sizes return to the initial 20 m, 40 
m and 60 m, in the presence of gas diffusion, foil 
cavitation significantly modifies the size of the 
downstream nuclei distributing them widely between 20 
m and 300 µm.  

 
Figure 7. Comparison of bubble size distribution at x=0.4m 
between considering and ignoring gas diffusion effects. 

3.4 Effect of Boundary Nucleation  
A boundary nucleation model based on existing 
experimental observations and theoretical studies was 
introduced by Hsiao et al (2017) to model the initiation and 
dynamics of sheet cavitation on foils. In the nucleation 
model, nuclei are released from rigid boundaries cells 
when the pressure at the cell center drops below a threshold 
pressure, e.g. the vapor pressure. N nuclei are then released 
from the cell in the flow field during the time interval t: 

s nN N f t A   ,   (18) 

where Ns is the number density of nucleation sites per unit 
area, A is the cell surface area, and fn  is the emission rate.  

The boundary nucleation model was found to recover very 
well experimentally measured (Berntsen et al. 2001) time-
averaged cavity length and oscillation frequency (Hsiao et 
al, 2017).  

 
Figure 8. Bubble distribution over the finite-span hydrofoil 
shown at a selected time with both free nuclei and boundary 
nucleation model (fn =0.8 kHz and Ns =10 cm-2). 
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We consider this model here to investigate the effects wall 
nucleation have on the bubble distribution downstream of 
the foil. Figure 8 shows the resulting bubble distribution 
with both field nuclei and boundary nucleation present. It 
is seen that the density of bubbles is higher in the lower 
pressure region near the leading edge where the boundary 
nucleation is active (Figure 9). This has, however, little 
effect on bubble volume in the tip vortex because the wall 
nuclei do not reach the tip vortex region. Finally, in the 
wake region, the number of larger-sized bubbles obtained 
from both nuclei sources is much higher than that obtained 
from the free nuclei only as seen in Figure 10. 

 
Figure 9. Comparison of bubble volume variation along the 
stream wise direction between the simulations with free nuclei 
only and with both free and surface nuclei.   

 
Figure 10. Comparison of bubble size distribution at x=0.4m 
between the simulations with free nuclei only and the one with 
both nuclei sources.  

3.5 Non-spherical Bubble Simulation 
To gain more insight into bubble dynamics and breakup on 
the hydrofoil, a 3D simulation of a traveling cavitation 
bubble very close to the foil surface, its 3D deformation, 
and its breakup into multiple smaller bubbles is conducted. 
The setup is the same as in the above simulations, with the 
exception that a finite thickness of 0.1 chord length is 
considered in the span direction with periodic boundary 
conditions imposed at both sides.  

As shown in Figure 11, a small bubble is released near the 
leading edge. As it travels into the low-pressure region on 

the suction side of foil, it grows, strongly deforms, then 
breaks up into a multiple of small bubbles while it travels 
further downstream and encounters higher pressures and 
shear flow near the foil boundary.  

This is further highlighted in Figure 12, which displays a 
sequence of zoomed front views of the bubble interacting 
with the liquid flow around it. From this figure it is seen, 
that the bubble elongates in the streamwise direction due to 
the foil viscous shear flow. A reverse flow is also seen 
under the bubble, particularly near its leading edge (a). 
This reverse flow creates local vorticity, which in turn 
shears off the downstream bubble part (b & c), introducing 
a strong secondary flow under the bubble (d). This local 
disturbance then further breaks up the bubble.  

This preliminary simulation implies the important role 
played by the local vorticity and shows bubble-induced 
flow disturbance during the bubble dynamics and breakup. 
In on-going studies the simulations will be refined with the 
ultimate goal of uncovering breakup criteria to correlate the 
breakup parameters with local flow conditions such as 
vorticity and turbulence, etc. 
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Figure 11. 3D simulation of a non-spherical traveling 
cavitation bubble on a NACA0015 foil, where the silver iso-
surface represents the bubble gas/liquid interface and the 
background flow is contoured by flow pressure. 



3.6 Effect of Bubble Breakup 
The above study has shown that the bubble may break up 
into multiple “daughter” bubbles when it collapses and 
rebounds. Early theoretical studies by Plesset and his 
coworkers also showed that the bubble becomes highly 
unstable to nonspherical disturbances during bubble 
rebound due to Taylor instability.  

In the absence of a physically established model for bubble 
breakup in pressure gradients and near boundaries, we 
investigate here the effects of bubble breakup using a 
heuristic model with the following characteristic 
parameters: breakup threshold, breakup moment, number 
of daughter bubbles, sizes of daughter bubbles, and 
locations of daughter bubbles. We impose that the total 
volume and the amount of non-condensable gas in the 
daughter bubbles remain the same as in the mother bubble 
after breakup. We also apply the breakup model only to 
strongly collapsing bubbles, i.e. for bubbles where the ratio 
of maximum bubble radius to initial minimum radius 
exceed a given threshold (here we used 20) and assume the 
breakup moment to be at the time of rebound. The number, 
sizes, and locations of daughter bubbles are selected 

arbitrarily as being 4 bubbles of equal size located within 
the confines of the mother bubble.  

Figure 13 shows the resulting dispersed bubbles when the 
bubble breakup model is applied and only free nuclei are 
considered. By comparing to Figure 4, we can see 
significant differences in the wake region, downstream of 
the bubble collapse region, downstream of which bubbles 
break up at rebound. Comparison of bubble volumes in 
Figure 14 does not show major influence of breakup on the 
total volumes because of the condition imposed of volume 
conservation at breakup. However, the bubble size 
distribution in the wake region is significantly different 
between the two cases. As can be seen in Figure 15, the 
breakup model significantly alters the bubble size 
distribution at x=0.4m. including bubble breakup results in 
a significant increase in the number of small and mid-size 
bubbles and a reduction in the large size bubbles.   

 
Figure 13. Bubble size distribution over the finite-span 
hydrofoil shown at a selected time when diffusion and bubble  
break up are taken into consideration. 

 
Figure 14. Comparison of the streamwise bubble volume 
distribution with and without bubble breakup.  

 
Figure 15. Comparison of bubble size distribution at x=0.4m 
between the simulations with and without considering bubble 
breakup. 
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Figure 12. A time sequence of the bubble interacting with the 
liquid flow around it, where the blue iso-surface represents
the 3D bubble surface and the purple lines are streamlines in 
the central plane of domain 



4 CONCLUSIONS  
An Eulerian-Lagrangian model is used to simulate a 
dispersed bubble flow over a finite-span rectangular 
hydrofoil. A gas diffusion model is implemented and 
complements the dynamics of traveling cavitation bubbles 
in the unsteady flow field.  Inclusion of gas diffusion in the 
model significantly alters the behavior of the bubbles in the 
wake after they collapse and rebound and results in much 
larger bubbles. This makes the fine vortices in the wake 
visible due to the collected larger bubbles. Inclusion of 
boundary nucleation also significantly increases the 
number of larger bubbles in the wake.  

Finally, including non-spherical effects shows that the 
bubbles are sheared and break up into several smaller 
bubbles. Inclusion of bubble breakup in the overall model 
results in a significant increase in the number of small and 
mid-size bubbles and a reduction in the large size bubbles.   
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